MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exopxfr2 Structured version   Visualization version   GIF version

Theorem exopxfr2 5188
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.)
Hypothesis
Ref Expression
exopxfr2.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
exopxfr2 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem exopxfr2
StepHypRef Expression
1 df-rel 5045 . . . . . . 7 (Rel 𝐴𝐴 ⊆ (V × V))
21biimpi 205 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
32sseld 3567 . . . . 5 (Rel 𝐴 → (𝑥𝐴𝑥 ∈ (V × V)))
43adantrd 483 . . . 4 (Rel 𝐴 → ((𝑥𝐴𝜑) → 𝑥 ∈ (V × V)))
54pm4.71rd 665 . . 3 (Rel 𝐴 → ((𝑥𝐴𝜑) ↔ (𝑥 ∈ (V × V) ∧ (𝑥𝐴𝜑))))
65rexbidv2 3030 . 2 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥 ∈ (V × V)(𝑥𝐴𝜑)))
7 eleq1 2676 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥𝐴 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
8 exopxfr2.1 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
97, 8anbi12d 743 . . 3 (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑥𝐴𝜑) ↔ (⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
109exopxfr 5187 . 2 (∃𝑥 ∈ (V × V)(𝑥𝐴𝜑) ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓))
116, 10syl6bb 275 1 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wrex 2897  Vcvv 3173  wss 3540  cop 4131   × cxp 5036  Rel wrel 5043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-iun 4457  df-opab 4644  df-xp 5044  df-rel 5045
This theorem is referenced by:  dvhopellsm  35424
  Copyright terms: Public domain W3C validator