Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exmoeu2 | Structured version Visualization version GIF version |
Description: Existence implies "at most one" is equivalent to uniqueness. (Contributed by NM, 5-Apr-2004.) |
Ref | Expression |
---|---|
exmoeu2 | ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu5 2484 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | 1 | baibr 943 | 1 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∃wex 1695 ∃!weu 2458 ∃*wmo 2459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-eu 2462 df-mo 2463 |
This theorem is referenced by: fneu 5909 |
Copyright terms: Public domain | W3C validator |