Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exmoeu Structured version   Visualization version   GIF version

Theorem exmoeu 2490
 Description: Existence in terms of "at most one" and uniqueness. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Wolf Lammen, 5-Dec-2018.)
Assertion
Ref Expression
exmoeu (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑))

Proof of Theorem exmoeu
StepHypRef Expression
1 df-mo 2463 . . . 4 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
21biimpi 205 . . 3 (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
32com12 32 . 2 (∃𝑥𝜑 → (∃*𝑥𝜑 → ∃!𝑥𝜑))
4 exmo 2483 . . . . 5 (∃𝑥𝜑 ∨ ∃*𝑥𝜑)
54ori 389 . . . 4 (¬ ∃𝑥𝜑 → ∃*𝑥𝜑)
65con1i 143 . . 3 (¬ ∃*𝑥𝜑 → ∃𝑥𝜑)
7 euex 2482 . . 3 (∃!𝑥𝜑 → ∃𝑥𝜑)
86, 7ja 172 . 2 ((∃*𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑)
93, 8impbii 198 1 (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195  ∃wex 1695  ∃!weu 2458  ∃*wmo 2459 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875 This theorem depends on definitions:  df-bi 196  df-or 384  df-ex 1696  df-eu 2462  df-mo 2463 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator