Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exlimiOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of exlimi 2073 as of 6-Oct-2021. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
exlimiOLD.1 | ⊢ Ⅎ𝑥𝜓 |
exlimiOLD.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimiOLD | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimiOLD.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | 1 | 19.23OLD 2207 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
3 | exlimiOLD.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | mpgbi 1716 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1695 ℲwnfOLD 1700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-or 384 df-ex 1696 df-nf 1701 df-nfOLD 1712 |
This theorem is referenced by: exlimihOLD 2210 |
Copyright terms: Public domain | W3C validator |