Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exinst01 Structured version   Visualization version   GIF version

Theorem exinst01 37871
Description: Existential Instantiation. Virtual Deduction rule corresponding to a special case of the Natural Deduction Sequent Calculus rule called Rule C in [Margaris] p. 79 and E in Table 1 on page 4 of the paper "Extracting information from intermediate T-systems" (2000) presented at IMLA99 by Mauro Ferrari, Camillo Fiorentini, and Pierangelo Miglioli. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
exinst01.1 𝑥𝜓
exinst01.2 (   𝜑   ,   𝜓   ▶   𝜒   )
exinst01.3 (𝜑 → ∀𝑥𝜑)
exinst01.4 (𝜒 → ∀𝑥𝜒)
Assertion
Ref Expression
exinst01 (   𝜑   ▶   𝜒   )

Proof of Theorem exinst01
StepHypRef Expression
1 exinst01.1 . . 3 𝑥𝜓
2 exinst01.2 . . . 4 (   𝜑   ,   𝜓   ▶   𝜒   )
32dfvd2i 37822 . . 3 (𝜑 → (𝜓𝜒))
4 exinst01.3 . . 3 (𝜑 → ∀𝑥𝜑)
5 exinst01.4 . . 3 (𝜒 → ∀𝑥𝜒)
61, 3, 4, 5eexinst01 37753 . 2 (𝜑𝜒)
76dfvd1ir 37810 1 (   𝜑   ▶   𝜒   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1473  wex 1695  (   wvd1 37806  (   wvd2 37814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696  df-nf 1701  df-vd1 37807  df-vd2 37815
This theorem is referenced by:  vk15.4jVD  38172
  Copyright terms: Public domain W3C validator