Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eximdOLD Structured version   Visualization version   GIF version

Theorem eximdOLD 2185
 Description: Obsolete proof of eximd 2072 as of 6-Oct-2021. (Contributed by NM, 29-Jun-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
eximdOLD.1 𝑥𝜑
eximdOLD.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
eximdOLD (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem eximdOLD
StepHypRef Expression
1 eximdOLD.1 . . 3 𝑥𝜑
21nfriOLD 2177 . 2 (𝜑 → ∀𝑥𝜑)
3 eximdOLD.2 . 2 (𝜑 → (𝜓𝜒))
42, 3eximdh 1778 1 (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∃wex 1695  ℲwnfOLD 1700 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-ex 1696  df-nfOLD 1712 This theorem is referenced by:  exlimdOLD  2211
 Copyright terms: Public domain W3C validator