Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlsvar Structured version   Visualization version   GIF version

Theorem evlsvar 19344
 Description: Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
evlsvar.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsvar.v 𝑉 = (𝐼 mVar 𝑈)
evlsvar.u 𝑈 = (𝑆s 𝑅)
evlsvar.b 𝐵 = (Base‘𝑆)
evlsvar.i (𝜑𝐼𝑊)
evlsvar.s (𝜑𝑆 ∈ CRing)
evlsvar.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsvar.x (𝜑𝑋𝐼)
Assertion
Ref Expression
evlsvar (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑋)))
Distinct variable groups:   𝐵,𝑔   𝑔,𝐼   𝑅,𝑔   𝑆,𝑔   𝑔,𝑊   𝑔,𝑋
Allowed substitution hints:   𝜑(𝑔)   𝑄(𝑔)   𝑈(𝑔)   𝑉(𝑔)

Proof of Theorem evlsvar
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evlsvar.i . . . . 5 (𝜑𝐼𝑊)
2 evlsvar.s . . . . 5 (𝜑𝑆 ∈ CRing)
3 evlsvar.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 evlsvar.q . . . . . 6 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
5 eqid 2610 . . . . . 6 (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈)
6 evlsvar.v . . . . . 6 𝑉 = (𝐼 mVar 𝑈)
7 evlsvar.u . . . . . 6 𝑈 = (𝑆s 𝑅)
8 eqid 2610 . . . . . 6 (𝑆s (𝐵𝑚 𝐼)) = (𝑆s (𝐵𝑚 𝐼))
9 evlsvar.b . . . . . 6 𝐵 = (Base‘𝑆)
10 eqid 2610 . . . . . 6 (algSc‘(𝐼 mPoly 𝑈)) = (algSc‘(𝐼 mPoly 𝑈))
11 eqid 2610 . . . . . 6 (𝑥𝑅 ↦ ((𝐵𝑚 𝐼) × {𝑥})) = (𝑥𝑅 ↦ ((𝐵𝑚 𝐼) × {𝑥}))
12 eqid 2610 . . . . . 6 (𝑥𝐼 ↦ (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)))
134, 5, 6, 7, 8, 9, 10, 11, 12evlsval2 19341 . . . . 5 ((𝐼𝑊𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆s (𝐵𝑚 𝐼))) ∧ ((𝑄 ∘ (algSc‘(𝐼 mPoly 𝑈))) = (𝑥𝑅 ↦ ((𝐵𝑚 𝐼) × {𝑥})) ∧ (𝑄𝑉) = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥))))))
141, 2, 3, 13syl3anc 1318 . . . 4 (𝜑 → (𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆s (𝐵𝑚 𝐼))) ∧ ((𝑄 ∘ (algSc‘(𝐼 mPoly 𝑈))) = (𝑥𝑅 ↦ ((𝐵𝑚 𝐼) × {𝑥})) ∧ (𝑄𝑉) = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥))))))
1514simprrd 793 . . 3 (𝜑 → (𝑄𝑉) = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥))))
1615fveq1d 6105 . 2 (𝜑 → ((𝑄𝑉)‘𝑋) = ((𝑥𝐼 ↦ (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)))‘𝑋))
17 eqid 2610 . . . . 5 (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈))
187subrgring 18606 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
193, 18syl 17 . . . . 5 (𝜑𝑈 ∈ Ring)
205, 6, 17, 1, 19mvrf2 19313 . . . 4 (𝜑𝑉:𝐼⟶(Base‘(𝐼 mPoly 𝑈)))
2120ffnd 5959 . . 3 (𝜑𝑉 Fn 𝐼)
22 evlsvar.x . . 3 (𝜑𝑋𝐼)
23 fvco2 6183 . . 3 ((𝑉 Fn 𝐼𝑋𝐼) → ((𝑄𝑉)‘𝑋) = (𝑄‘(𝑉𝑋)))
2421, 22, 23syl2anc 691 . 2 (𝜑 → ((𝑄𝑉)‘𝑋) = (𝑄‘(𝑉𝑋)))
25 fveq2 6103 . . . . 5 (𝑥 = 𝑋 → (𝑔𝑥) = (𝑔𝑋))
2625mpteq2dv 4673 . . . 4 (𝑥 = 𝑋 → (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)) = (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑋)))
27 ovex 6577 . . . . 5 (𝐵𝑚 𝐼) ∈ V
2827mptex 6390 . . . 4 (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑋)) ∈ V
2926, 12, 28fvmpt 6191 . . 3 (𝑋𝐼 → ((𝑥𝐼 ↦ (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)))‘𝑋) = (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑋)))
3022, 29syl 17 . 2 (𝜑 → ((𝑥𝐼 ↦ (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)))‘𝑋) = (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑋)))
3116, 24, 303eqtr3d 2652 1 (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {csn 4125   ↦ cmpt 4643   × cxp 5036   ∘ ccom 5042   Fn wfn 5799  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  Basecbs 15695   ↾s cress 15696   ↑s cpws 15930  Ringcrg 18370  CRingccrg 18371   RingHom crh 18535  SubRingcsubrg 18599  algSccascl 19132   mVar cmvr 19173   mPoly cmpl 19174   evalSub ces 19325 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-srg 18329  df-ring 18372  df-cring 18373  df-rnghom 18538  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-assa 19133  df-asp 19134  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-evls 19327 This theorem is referenced by:  evlsvarsrng  19349  evlvar  19350  mpfproj  19352  mpfind  19357  evl1var  19521
 Copyright terms: Public domain W3C validator