MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1expd Structured version   Visualization version   GIF version

Theorem evl1expd 19530
Description: Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1addd.q 𝑂 = (eval1𝑅)
evl1addd.p 𝑃 = (Poly1𝑅)
evl1addd.b 𝐵 = (Base‘𝑅)
evl1addd.u 𝑈 = (Base‘𝑃)
evl1addd.1 (𝜑𝑅 ∈ CRing)
evl1addd.2 (𝜑𝑌𝐵)
evl1addd.3 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
evl1expd.f = (.g‘(mulGrp‘𝑃))
evl1expd.e = (.g‘(mulGrp‘𝑅))
evl1expd.4 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
evl1expd (𝜑 → ((𝑁 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉)))

Proof of Theorem evl1expd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1addd.1 . . . . 5 (𝜑𝑅 ∈ CRing)
2 crngring 18381 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
4 evl1addd.p . . . . 5 𝑃 = (Poly1𝑅)
54ply1ring 19439 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
6 eqid 2610 . . . . 5 (mulGrp‘𝑃) = (mulGrp‘𝑃)
76ringmgp 18376 . . . 4 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
83, 5, 73syl 18 . . 3 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
9 evl1expd.4 . . 3 (𝜑𝑁 ∈ ℕ0)
10 evl1addd.3 . . . 4 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
1110simpld 474 . . 3 (𝜑𝑀𝑈)
12 evl1addd.u . . . . 5 𝑈 = (Base‘𝑃)
136, 12mgpbas 18318 . . . 4 𝑈 = (Base‘(mulGrp‘𝑃))
14 evl1expd.f . . . 4 = (.g‘(mulGrp‘𝑃))
1513, 14mulgnn0cl 17381 . . 3 (((mulGrp‘𝑃) ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑀𝑈) → (𝑁 𝑀) ∈ 𝑈)
168, 9, 11, 15syl3anc 1318 . 2 (𝜑 → (𝑁 𝑀) ∈ 𝑈)
17 evl1addd.q . . . . . . . . 9 𝑂 = (eval1𝑅)
18 eqid 2610 . . . . . . . . 9 (𝑅s 𝐵) = (𝑅s 𝐵)
19 evl1addd.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
2017, 4, 18, 19evl1rhm 19517 . . . . . . . 8 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
211, 20syl 17 . . . . . . 7 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
22 eqid 2610 . . . . . . . 8 (mulGrp‘(𝑅s 𝐵)) = (mulGrp‘(𝑅s 𝐵))
236, 22rhmmhm 18545 . . . . . . 7 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))))
2421, 23syl 17 . . . . . 6 (𝜑𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))))
25 eqid 2610 . . . . . . 7 (.g‘(mulGrp‘(𝑅s 𝐵))) = (.g‘(mulGrp‘(𝑅s 𝐵)))
2613, 14, 25mhmmulg 17406 . . . . . 6 ((𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅s 𝐵))) ∧ 𝑁 ∈ ℕ0𝑀𝑈) → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)))
2724, 9, 11, 26syl3anc 1318 . . . . 5 (𝜑 → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)))
28 eqid 2610 . . . . . . 7 (.g‘((mulGrp‘𝑅) ↑s 𝐵)) = (.g‘((mulGrp‘𝑅) ↑s 𝐵))
29 eqidd 2611 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘(mulGrp‘(𝑅s 𝐵))))
30 fvex 6113 . . . . . . . . . 10 (Base‘𝑅) ∈ V
3119, 30eqeltri 2684 . . . . . . . . 9 𝐵 ∈ V
32 eqid 2610 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
33 eqid 2610 . . . . . . . . . 10 ((mulGrp‘𝑅) ↑s 𝐵) = ((mulGrp‘𝑅) ↑s 𝐵)
34 eqid 2610 . . . . . . . . . 10 (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘(mulGrp‘(𝑅s 𝐵)))
35 eqid 2610 . . . . . . . . . 10 (Base‘((mulGrp‘𝑅) ↑s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵))
36 eqid 2610 . . . . . . . . . 10 (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘(mulGrp‘(𝑅s 𝐵)))
37 eqid 2610 . . . . . . . . . 10 (+g‘((mulGrp‘𝑅) ↑s 𝐵)) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))
3818, 32, 33, 22, 34, 35, 36, 37pwsmgp 18441 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ 𝐵 ∈ V) → ((Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
391, 31, 38sylancl 693 . . . . . . . 8 (𝜑 → ((Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵))))
4039simpld 474 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
41 ssv 3588 . . . . . . . 8 (Base‘(mulGrp‘(𝑅s 𝐵))) ⊆ V
4241a1i 11 . . . . . . 7 (𝜑 → (Base‘(mulGrp‘(𝑅s 𝐵))) ⊆ V)
43 ovex 6577 . . . . . . . 8 (𝑥(+g‘(mulGrp‘(𝑅s 𝐵)))𝑦) ∈ V
4443a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(mulGrp‘(𝑅s 𝐵)))𝑦) ∈ V)
4539simprd 478 . . . . . . . 8 (𝜑 → (+g‘(mulGrp‘(𝑅s 𝐵))) = (+g‘((mulGrp‘𝑅) ↑s 𝐵)))
4645oveqdr 6573 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(mulGrp‘(𝑅s 𝐵)))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s 𝐵))𝑦))
4725, 28, 29, 40, 42, 44, 46mulgpropd 17407 . . . . . 6 (𝜑 → (.g‘(mulGrp‘(𝑅s 𝐵))) = (.g‘((mulGrp‘𝑅) ↑s 𝐵)))
4847oveqd 6566 . . . . 5 (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑂𝑀)) = (𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀)))
4927, 48eqtrd 2644 . . . 4 (𝜑 → (𝑂‘(𝑁 𝑀)) = (𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀)))
5049fveq1d 6105 . . 3 (𝜑 → ((𝑂‘(𝑁 𝑀))‘𝑌) = ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌))
5132ringmgp 18376 . . . . . 6 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
523, 51syl 17 . . . . 5 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
5331a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
54 eqid 2610 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
5512, 54rhmf 18549 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
5621, 55syl 17 . . . . . . 7 (𝜑𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
5756, 11ffvelrnd 6268 . . . . . 6 (𝜑 → (𝑂𝑀) ∈ (Base‘(𝑅s 𝐵)))
5822, 54mgpbas 18318 . . . . . . 7 (Base‘(𝑅s 𝐵)) = (Base‘(mulGrp‘(𝑅s 𝐵)))
5958, 40syl5eq 2656 . . . . . 6 (𝜑 → (Base‘(𝑅s 𝐵)) = (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
6057, 59eleqtrd 2690 . . . . 5 (𝜑 → (𝑂𝑀) ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)))
61 evl1addd.2 . . . . 5 (𝜑𝑌𝐵)
62 evl1expd.e . . . . . 6 = (.g‘(mulGrp‘𝑅))
6333, 35, 28, 62pwsmulg 17410 . . . . 5 ((((mulGrp‘𝑅) ∈ Mnd ∧ 𝐵 ∈ V) ∧ (𝑁 ∈ ℕ0 ∧ (𝑂𝑀) ∈ (Base‘((mulGrp‘𝑅) ↑s 𝐵)) ∧ 𝑌𝐵)) → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 ((𝑂𝑀)‘𝑌)))
6452, 53, 9, 60, 61, 63syl23anc 1325 . . . 4 (𝜑 → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 ((𝑂𝑀)‘𝑌)))
6510simprd 478 . . . . 5 (𝜑 → ((𝑂𝑀)‘𝑌) = 𝑉)
6665oveq2d 6565 . . . 4 (𝜑 → (𝑁 ((𝑂𝑀)‘𝑌)) = (𝑁 𝑉))
6764, 66eqtrd 2644 . . 3 (𝜑 → ((𝑁(.g‘((mulGrp‘𝑅) ↑s 𝐵))(𝑂𝑀))‘𝑌) = (𝑁 𝑉))
6850, 67eqtrd 2644 . 2 (𝜑 → ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉))
6916, 68jca 553 1 (𝜑 → ((𝑁 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 𝑀))‘𝑌) = (𝑁 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  wf 5800  cfv 5804  (class class class)co 6549  0cn0 11169  Basecbs 15695  +gcplusg 15768  s cpws 15930  Mndcmnd 17117   MndHom cmhm 17156  .gcmg 17363  mulGrpcmgp 18312  Ringcrg 18370  CRingccrg 18371   RingHom crh 18535  Poly1cpl1 19368  eval1ce1 19500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-srg 18329  df-ring 18372  df-cring 18373  df-rnghom 18538  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-assa 19133  df-asp 19134  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-evls 19327  df-evl 19328  df-psr1 19371  df-ply1 19373  df-evl1 19502
This theorem is referenced by:  evl1varpwval  19547  plypf1  23772  lgsqrlem1  24871  idomrootle  36792
  Copyright terms: Public domain W3C validator