Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evendiv2z Structured version   Visualization version   GIF version

Theorem evendiv2z 40083
 Description: The result of dividing an even number by 2 is an integer. (Contributed by AV, 15-Jun-2020.)
Assertion
Ref Expression
evendiv2z (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ)

Proof of Theorem evendiv2z
StepHypRef Expression
1 iseven 40079 . 2 (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ))
21simprbi 479 1 (𝑍 ∈ Even → (𝑍 / 2) ∈ ℤ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977  (class class class)co 6549   / cdiv 10563  2c2 10947  ℤcz 11254   Even ceven 40075 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-even 40077 This theorem is referenced by:  zefldiv2ALTV  40111  nn0e  40146
 Copyright terms: Public domain W3C validator