MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euxfr2 Structured version   Visualization version   GIF version

Theorem euxfr2 3358
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.)
Hypotheses
Ref Expression
euxfr2.1 𝐴 ∈ V
euxfr2.2 ∃*𝑦 𝑥 = 𝐴
Assertion
Ref Expression
euxfr2 (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem euxfr2
StepHypRef Expression
1 2euswap 2536 . . . 4 (∀𝑥∃*𝑦(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑)))
2 euxfr2.2 . . . . . 6 ∃*𝑦 𝑥 = 𝐴
32moani 2513 . . . . 5 ∃*𝑦(𝜑𝑥 = 𝐴)
4 ancom 465 . . . . . 6 ((𝜑𝑥 = 𝐴) ↔ (𝑥 = 𝐴𝜑))
54mobii 2481 . . . . 5 (∃*𝑦(𝜑𝑥 = 𝐴) ↔ ∃*𝑦(𝑥 = 𝐴𝜑))
63, 5mpbi 219 . . . 4 ∃*𝑦(𝑥 = 𝐴𝜑)
71, 6mpg 1715 . . 3 (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑))
8 2euswap 2536 . . . 4 (∀𝑦∃*𝑥(𝑥 = 𝐴𝜑) → (∃!𝑦𝑥(𝑥 = 𝐴𝜑) → ∃!𝑥𝑦(𝑥 = 𝐴𝜑)))
9 moeq 3349 . . . . . 6 ∃*𝑥 𝑥 = 𝐴
109moani 2513 . . . . 5 ∃*𝑥(𝜑𝑥 = 𝐴)
114mobii 2481 . . . . 5 (∃*𝑥(𝜑𝑥 = 𝐴) ↔ ∃*𝑥(𝑥 = 𝐴𝜑))
1210, 11mpbi 219 . . . 4 ∃*𝑥(𝑥 = 𝐴𝜑)
138, 12mpg 1715 . . 3 (∃!𝑦𝑥(𝑥 = 𝐴𝜑) → ∃!𝑥𝑦(𝑥 = 𝐴𝜑))
147, 13impbii 198 . 2 (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝑥(𝑥 = 𝐴𝜑))
15 euxfr2.1 . . . 4 𝐴 ∈ V
16 biidd 251 . . . 4 (𝑥 = 𝐴 → (𝜑𝜑))
1715, 16ceqsexv 3215 . . 3 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜑)
1817eubii 2480 . 2 (∃!𝑦𝑥(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑)
1914, 18bitri 263 1 (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  ∃*wmo 2459  Vcvv 3173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-v 3175
This theorem is referenced by:  euxfr  3359  euop2  4899
  Copyright terms: Public domain W3C validator