Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eupthres | Structured version Visualization version GIF version |
Description: The restriction 〈𝐻, 𝑄〉 of an Eulerian path 〈𝐹, 𝑃〉 to an initial segment of the path (of length 𝑁) forms an Eulerian path on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
eupth0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
eupth0.i | ⊢ 𝐼 = (iEdg‘𝐺) |
eupthres.d | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
eupthres.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(#‘𝐹))) |
eupthres.e | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
eupthres.h | ⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) |
eupthres.q | ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) |
eupthres.s | ⊢ (Vtx‘𝑆) = 𝑉 |
Ref | Expression |
---|---|
eupthres | ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupth0.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eupth0.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | eupthres.d | . . . 4 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
4 | eupthistrl 41379 | . . . 4 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹(TrailS‘𝐺)𝑃) | |
5 | trlis1wlk 40905 | . . . 4 ⊢ (𝐹(TrailS‘𝐺)𝑃 → 𝐹(1Walks‘𝐺)𝑃) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐹(1Walks‘𝐺)𝑃) |
7 | eupthres.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (0..^(#‘𝐹))) | |
8 | eupthres.s | . . . 4 ⊢ (Vtx‘𝑆) = 𝑉 | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
10 | eupthres.e | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
11 | eupthres.h | . . 3 ⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) | |
12 | eupthres.q | . . 3 ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) | |
13 | 1, 2, 6, 7, 9, 10, 11, 12 | 1wlkres 40879 | . 2 ⊢ (𝜑 → 𝐻(1Walks‘𝑆)𝑄) |
14 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(TrailS‘𝐺)𝑃) |
15 | 1, 2, 14, 7, 11 | trlreslem 40907 | . 2 ⊢ (𝜑 → 𝐻:(0..^(#‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
16 | 1, 2, 6, 7, 9, 10, 11, 12 | 1wlkreslem 40878 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V)) |
17 | eqid 2610 | . . . . 5 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
18 | 17 | iseupthf1o 41369 | . . . 4 ⊢ ((𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V) → (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(1Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(#‘𝐻))–1-1-onto→dom (iEdg‘𝑆)))) |
19 | 16, 18 | syl 17 | . . 3 ⊢ (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(1Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(#‘𝐻))–1-1-onto→dom (iEdg‘𝑆)))) |
20 | 10 | dmeqd 5248 | . . . . 5 ⊢ (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
21 | 20 | f1oeq3d 6047 | . . . 4 ⊢ (𝜑 → (𝐻:(0..^(#‘𝐻))–1-1-onto→dom (iEdg‘𝑆) ↔ 𝐻:(0..^(#‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))) |
22 | 21 | anbi2d 736 | . . 3 ⊢ (𝜑 → ((𝐻(1Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(#‘𝐻))–1-1-onto→dom (iEdg‘𝑆)) ↔ (𝐻(1Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(#‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))) |
23 | 19, 22 | bitrd 267 | . 2 ⊢ (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(1Walks‘𝑆)𝑄 ∧ 𝐻:(0..^(#‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))) |
24 | 13, 15, 23 | mpbir2and 959 | 1 ⊢ (𝜑 → 𝐻(EulerPaths‘𝑆)𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 Vcvv 3173 class class class wbr 4583 dom cdm 5038 ↾ cres 5040 “ cima 5041 –1-1-onto→wf1o 5803 ‘cfv 5804 (class class class)co 6549 0cc0 9815 ...cfz 12197 ..^cfzo 12334 #chash 12979 Vtxcvtx 25673 iEdgciedg 25674 1Walksc1wlks 40796 TrailSctrls 40899 EulerPathsceupth 41364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-ifp 1007 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-substr 13158 df-1wlks 40800 df-trls 40901 df-eupth 41365 |
This theorem is referenced by: eucrct2eupth1 41412 |
Copyright terms: Public domain | W3C validator |