Step | Hyp | Ref
| Expression |
1 | | umgra0 25854 |
. . 3
⊢ (𝑉 ∈ 𝑊 → 𝑉 UMGrph ∅) |
2 | 1 | adantr 480 |
. 2
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → 𝑉 UMGrph ∅) |
3 | | 0nn0 11184 |
. . . 4
⊢ 0 ∈
ℕ0 |
4 | 3 | a1i 11 |
. . 3
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → 0 ∈
ℕ0) |
5 | | f1o0 6085 |
. . . 4
⊢
∅:∅–1-1-onto→∅ |
6 | 5 | a1i 11 |
. . 3
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ∅:∅–1-1-onto→∅) |
7 | | simpr 476 |
. . . . . 6
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) |
8 | | f1osng 6089 |
. . . . . 6
⊢ ((0
∈ ℕ0 ∧ 𝐴 ∈ 𝑉) → {〈0, 𝐴〉}:{0}–1-1-onto→{𝐴}) |
9 | 3, 7, 8 | sylancr 694 |
. . . . 5
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → {〈0, 𝐴〉}:{0}–1-1-onto→{𝐴}) |
10 | | f1of 6050 |
. . . . 5
⊢
({〈0, 𝐴〉}:{0}–1-1-onto→{𝐴} → {〈0, 𝐴〉}:{0}⟶{𝐴}) |
11 | 9, 10 | syl 17 |
. . . 4
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → {〈0, 𝐴〉}:{0}⟶{𝐴}) |
12 | 7 | snssd 4281 |
. . . 4
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → {𝐴} ⊆ 𝑉) |
13 | 11, 12 | fssd 5970 |
. . 3
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → {〈0, 𝐴〉}:{0}⟶𝑉) |
14 | | ral0 4028 |
. . . 4
⊢
∀𝑘 ∈
∅ (∅‘(∅‘𝑘)) = {({〈0, 𝐴〉}‘(𝑘 − 1)), ({〈0, 𝐴〉}‘𝑘)} |
15 | 14 | a1i 11 |
. . 3
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ∀𝑘 ∈ ∅
(∅‘(∅‘𝑘)) = {({〈0, 𝐴〉}‘(𝑘 − 1)), ({〈0, 𝐴〉}‘𝑘)}) |
16 | | oveq2 6557 |
. . . . . . 7
⊢ (𝑛 = 0 → (1...𝑛) = (1...0)) |
17 | | fz10 12233 |
. . . . . . 7
⊢ (1...0) =
∅ |
18 | 16, 17 | syl6eq 2660 |
. . . . . 6
⊢ (𝑛 = 0 → (1...𝑛) = ∅) |
19 | | f1oeq2 6041 |
. . . . . 6
⊢
((1...𝑛) = ∅
→ (∅:(1...𝑛)–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅)) |
20 | 18, 19 | syl 17 |
. . . . 5
⊢ (𝑛 = 0 → (∅:(1...𝑛)–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅)) |
21 | | oveq2 6557 |
. . . . . . 7
⊢ (𝑛 = 0 → (0...𝑛) = (0...0)) |
22 | | 0z 11265 |
. . . . . . . 8
⊢ 0 ∈
ℤ |
23 | | fzsn 12254 |
. . . . . . . 8
⊢ (0 ∈
ℤ → (0...0) = {0}) |
24 | 22, 23 | ax-mp 5 |
. . . . . . 7
⊢ (0...0) =
{0} |
25 | 21, 24 | syl6eq 2660 |
. . . . . 6
⊢ (𝑛 = 0 → (0...𝑛) = {0}) |
26 | 25 | feq2d 5944 |
. . . . 5
⊢ (𝑛 = 0 → ({〈0, 𝐴〉}:(0...𝑛)⟶𝑉 ↔ {〈0, 𝐴〉}:{0}⟶𝑉)) |
27 | 18 | raleqdv 3121 |
. . . . 5
⊢ (𝑛 = 0 → (∀𝑘 ∈ (1...𝑛)(∅‘(∅‘𝑘)) = {({〈0, 𝐴〉}‘(𝑘 − 1)), ({〈0, 𝐴〉}‘𝑘)} ↔ ∀𝑘 ∈ ∅
(∅‘(∅‘𝑘)) = {({〈0, 𝐴〉}‘(𝑘 − 1)), ({〈0, 𝐴〉}‘𝑘)})) |
28 | 20, 26, 27 | 3anbi123d 1391 |
. . . 4
⊢ (𝑛 = 0 → ((∅:(1...𝑛)–1-1-onto→∅ ∧ {〈0, 𝐴〉}:(0...𝑛)⟶𝑉 ∧ ∀𝑘 ∈ (1...𝑛)(∅‘(∅‘𝑘)) = {({〈0, 𝐴〉}‘(𝑘 − 1)), ({〈0, 𝐴〉}‘𝑘)}) ↔ (∅:∅–1-1-onto→∅ ∧ {〈0, 𝐴〉}:{0}⟶𝑉 ∧ ∀𝑘 ∈ ∅
(∅‘(∅‘𝑘)) = {({〈0, 𝐴〉}‘(𝑘 − 1)), ({〈0, 𝐴〉}‘𝑘)}))) |
29 | 28 | rspcev 3282 |
. . 3
⊢ ((0
∈ ℕ0 ∧ (∅:∅–1-1-onto→∅ ∧ {〈0, 𝐴〉}:{0}⟶𝑉 ∧ ∀𝑘 ∈ ∅
(∅‘(∅‘𝑘)) = {({〈0, 𝐴〉}‘(𝑘 − 1)), ({〈0, 𝐴〉}‘𝑘)})) → ∃𝑛 ∈ ℕ0
(∅:(1...𝑛)–1-1-onto→∅ ∧ {〈0, 𝐴〉}:(0...𝑛)⟶𝑉 ∧ ∀𝑘 ∈ (1...𝑛)(∅‘(∅‘𝑘)) = {({〈0, 𝐴〉}‘(𝑘 − 1)), ({〈0, 𝐴〉}‘𝑘)})) |
30 | 4, 6, 13, 15, 29 | syl13anc 1320 |
. 2
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ∃𝑛 ∈ ℕ0
(∅:(1...𝑛)–1-1-onto→∅ ∧ {〈0, 𝐴〉}:(0...𝑛)⟶𝑉 ∧ ∀𝑘 ∈ (1...𝑛)(∅‘(∅‘𝑘)) = {({〈0, 𝐴〉}‘(𝑘 − 1)), ({〈0, 𝐴〉}‘𝑘)})) |
31 | | dm0 5260 |
. . 3
⊢ dom
∅ = ∅ |
32 | | iseupa 26492 |
. . 3
⊢ (dom
∅ = ∅ → (∅(𝑉 EulPaths ∅){〈0, 𝐴〉} ↔ (𝑉 UMGrph ∅ ∧
∃𝑛 ∈
ℕ0 (∅:(1...𝑛)–1-1-onto→∅ ∧ {〈0, 𝐴〉}:(0...𝑛)⟶𝑉 ∧ ∀𝑘 ∈ (1...𝑛)(∅‘(∅‘𝑘)) = {({〈0, 𝐴〉}‘(𝑘 − 1)), ({〈0, 𝐴〉}‘𝑘)})))) |
33 | 31, 32 | ax-mp 5 |
. 2
⊢
(∅(𝑉 EulPaths
∅){〈0, 𝐴〉}
↔ (𝑉 UMGrph ∅
∧ ∃𝑛 ∈
ℕ0 (∅:(1...𝑛)–1-1-onto→∅ ∧ {〈0, 𝐴〉}:(0...𝑛)⟶𝑉 ∧ ∀𝑘 ∈ (1...𝑛)(∅‘(∅‘𝑘)) = {({〈0, 𝐴〉}‘(𝑘 − 1)), ({〈0, 𝐴〉}‘𝑘)}))) |
34 | 2, 30, 33 | sylanbrc 695 |
1
⊢ ((𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ∅(𝑉 EulPaths ∅){〈0, 𝐴〉}) |