Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemr Structured version   Visualization version   GIF version

Theorem eulerpartlemr 29763
Description: Lemma for eulerpart 29771. (Contributed by Thierry Arnoux, 13-Nov-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemr 𝑂 = ((𝑇𝑅) ∩ 𝑃)
Distinct variable groups:   𝑓,𝑘,𝑛,𝑧   𝑓,𝐽,𝑛   𝑓,𝑁   𝑔,𝑛,𝑃
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑔,𝑘,𝑜,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemr
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elin 3758 . . . 4 ( ∈ (𝑇𝑅) ↔ (𝑇𝑅))
21anbi1i 727 . . 3 (( ∈ (𝑇𝑅) ∧ 𝑃) ↔ ((𝑇𝑅) ∧ 𝑃))
3 elin 3758 . . 3 ( ∈ ((𝑇𝑅) ∩ 𝑃) ↔ ( ∈ (𝑇𝑅) ∧ 𝑃))
4 eulerpart.p . . . . 5 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
5 eulerpart.o . . . . 5 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
6 eulerpart.d . . . . 5 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
74, 5, 6eulerpartlemo 29754 . . . 4 (𝑂 ↔ (𝑃 ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛))
8 cnveq 5218 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑓 = )
98imaeq1d 5384 . . . . . . . . . . . . . . . 16 (𝑓 = → (𝑓 “ ℕ) = ( “ ℕ))
109eleq1d 2672 . . . . . . . . . . . . . . 15 (𝑓 = → ((𝑓 “ ℕ) ∈ Fin ↔ ( “ ℕ) ∈ Fin))
11 fveq1 6102 . . . . . . . . . . . . . . . . . 18 (𝑓 = → (𝑓𝑘) = (𝑘))
1211oveq1d 6564 . . . . . . . . . . . . . . . . 17 (𝑓 = → ((𝑓𝑘) · 𝑘) = ((𝑘) · 𝑘))
1312sumeq2sdv 14282 . . . . . . . . . . . . . . . 16 (𝑓 = → Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑘) · 𝑘))
1413eqeq1d 2612 . . . . . . . . . . . . . . 15 (𝑓 = → (Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ ℕ ((𝑘) · 𝑘) = 𝑁))
1510, 14anbi12d 743 . . . . . . . . . . . . . 14 (𝑓 = → (((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁) ↔ (( “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑘) · 𝑘) = 𝑁)))
1615, 4elrab2 3333 . . . . . . . . . . . . 13 (𝑃 ↔ ( ∈ (ℕ0𝑚 ℕ) ∧ (( “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑘) · 𝑘) = 𝑁)))
1716simplbi 475 . . . . . . . . . . . 12 (𝑃 ∈ (ℕ0𝑚 ℕ))
18 cnvimass 5404 . . . . . . . . . . . . 13 ( “ ℕ) ⊆ dom
19 nn0ex 11175 . . . . . . . . . . . . . . 15 0 ∈ V
20 nnex 10903 . . . . . . . . . . . . . . 15 ℕ ∈ V
2119, 20elmap 7772 . . . . . . . . . . . . . 14 ( ∈ (ℕ0𝑚 ℕ) ↔ :ℕ⟶ℕ0)
22 fdm 5964 . . . . . . . . . . . . . 14 (:ℕ⟶ℕ0 → dom = ℕ)
2321, 22sylbi 206 . . . . . . . . . . . . 13 ( ∈ (ℕ0𝑚 ℕ) → dom = ℕ)
2418, 23syl5sseq 3616 . . . . . . . . . . . 12 ( ∈ (ℕ0𝑚 ℕ) → ( “ ℕ) ⊆ ℕ)
2517, 24syl 17 . . . . . . . . . . 11 (𝑃 → ( “ ℕ) ⊆ ℕ)
2625sselda 3568 . . . . . . . . . 10 ((𝑃𝑛 ∈ ( “ ℕ)) → 𝑛 ∈ ℕ)
2726ralrimiva 2949 . . . . . . . . 9 (𝑃 → ∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ)
2827biantrurd 528 . . . . . . . 8 (𝑃 → (∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛 ↔ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)))
2917biantrurd 528 . . . . . . . 8 (𝑃 → ((∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛) ↔ ( ∈ (ℕ0𝑚 ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛))))
3016simprbi 479 . . . . . . . . . 10 (𝑃 → (( “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑘) · 𝑘) = 𝑁))
3130simpld 474 . . . . . . . . 9 (𝑃 → ( “ ℕ) ∈ Fin)
3231biantrud 527 . . . . . . . 8 (𝑃 → (( ∈ (ℕ0𝑚 ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)) ↔ (( ∈ (ℕ0𝑚 ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)) ∧ ( “ ℕ) ∈ Fin)))
3328, 29, 323bitrd 293 . . . . . . 7 (𝑃 → (∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛 ↔ (( ∈ (ℕ0𝑚 ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)) ∧ ( “ ℕ) ∈ Fin)))
34 dfss3 3558 . . . . . . . . . 10 (( “ ℕ) ⊆ 𝐽 ↔ ∀𝑛 ∈ ( “ ℕ)𝑛𝐽)
35 breq2 4587 . . . . . . . . . . . . 13 (𝑧 = 𝑛 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑛))
3635notbid 307 . . . . . . . . . . . 12 (𝑧 = 𝑛 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑛))
37 eulerpart.j . . . . . . . . . . . 12 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
3836, 37elrab2 3333 . . . . . . . . . . 11 (𝑛𝐽 ↔ (𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛))
3938ralbii 2963 . . . . . . . . . 10 (∀𝑛 ∈ ( “ ℕ)𝑛𝐽 ↔ ∀𝑛 ∈ ( “ ℕ)(𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛))
40 r19.26 3046 . . . . . . . . . 10 (∀𝑛 ∈ ( “ ℕ)(𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) ↔ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛))
4134, 39, 403bitri 285 . . . . . . . . 9 (( “ ℕ) ⊆ 𝐽 ↔ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛))
4241anbi2i 726 . . . . . . . 8 (( ∈ (ℕ0𝑚 ℕ) ∧ ( “ ℕ) ⊆ 𝐽) ↔ ( ∈ (ℕ0𝑚 ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)))
4342anbi1i 727 . . . . . . 7 ((( ∈ (ℕ0𝑚 ℕ) ∧ ( “ ℕ) ⊆ 𝐽) ∧ ( “ ℕ) ∈ Fin) ↔ (( ∈ (ℕ0𝑚 ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)) ∧ ( “ ℕ) ∈ Fin))
4433, 43syl6bbr 277 . . . . . 6 (𝑃 → (∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛 ↔ (( ∈ (ℕ0𝑚 ℕ) ∧ ( “ ℕ) ⊆ 𝐽) ∧ ( “ ℕ) ∈ Fin)))
459sseq1d 3595 . . . . . . . 8 (𝑓 = → ((𝑓 “ ℕ) ⊆ 𝐽 ↔ ( “ ℕ) ⊆ 𝐽))
46 eulerpart.t . . . . . . . 8 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
4745, 46elrab2 3333 . . . . . . 7 (𝑇 ↔ ( ∈ (ℕ0𝑚 ℕ) ∧ ( “ ℕ) ⊆ 𝐽))
48 vex 3176 . . . . . . . 8 ∈ V
49 eulerpart.r . . . . . . . 8 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
5048, 10, 49elab2 3323 . . . . . . 7 (𝑅 ↔ ( “ ℕ) ∈ Fin)
5147, 50anbi12i 729 . . . . . 6 ((𝑇𝑅) ↔ (( ∈ (ℕ0𝑚 ℕ) ∧ ( “ ℕ) ⊆ 𝐽) ∧ ( “ ℕ) ∈ Fin))
5244, 51syl6bbr 277 . . . . 5 (𝑃 → (∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛 ↔ (𝑇𝑅)))
5352pm5.32i 667 . . . 4 ((𝑃 ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛) ↔ (𝑃 ∧ (𝑇𝑅)))
54 ancom 465 . . . 4 ((𝑃 ∧ (𝑇𝑅)) ↔ ((𝑇𝑅) ∧ 𝑃))
557, 53, 543bitri 285 . . 3 (𝑂 ↔ ((𝑇𝑅) ∧ 𝑃))
562, 3, 553bitr4ri 292 . 2 (𝑂 ∈ ((𝑇𝑅) ∩ 𝑃))
5756eqriv 2607 1 𝑂 = ((𝑇𝑅) ∩ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  {crab 2900  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   class class class wbr 4583  {copab 4642  cmpt 4643  ccnv 5037  dom cdm 5038  cres 5040  cima 5041  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551   supp csupp 7182  𝑚 cmap 7744  Fincfn 7841  1c1 9816   · cmul 9820  cle 9954  cn 10897  2c2 10947  0cn0 11169  cexp 12722  Σcsu 14264  cdvds 14821  bitscbits 14979  𝟭cind 29400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-sum 14265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator