Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > euf | Structured version Visualization version GIF version |
Description: A version of the existential uniqueness definition with a hypothesis instead of a distinct variable condition. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2018.) |
Ref | Expression |
---|---|
euf.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
euf | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2462 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
2 | euf.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1830 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 = 𝑧 | |
4 | 2, 3 | nfbi 1821 | . . . 4 ⊢ Ⅎ𝑦(𝜑 ↔ 𝑥 = 𝑧) |
5 | 4 | nfal 2139 | . . 3 ⊢ Ⅎ𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑧) |
6 | nfv 1830 | . . 3 ⊢ Ⅎ𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | |
7 | equequ2 1940 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | |
8 | 7 | bibi2d 331 | . . . 4 ⊢ (𝑧 = 𝑦 → ((𝜑 ↔ 𝑥 = 𝑧) ↔ (𝜑 ↔ 𝑥 = 𝑦))) |
9 | 8 | albidv 1836 | . . 3 ⊢ (𝑧 = 𝑦 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
10 | 5, 6, 9 | cbvex 2260 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
11 | 1, 10 | bitri 263 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∀wal 1473 ∃wex 1695 Ⅎwnf 1699 ∃!weu 2458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-eu 2462 |
This theorem is referenced by: eu1 2498 bj-eumo0 32018 |
Copyright terms: Public domain | W3C validator |