Proof of Theorem etransclem7
Step | Hyp | Ref
| Expression |
1 | | fzfid 12634 |
. 2
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
2 | | 0zd 11266 |
. . 3
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ 𝑃 < (𝐶‘𝑗)) → 0 ∈ ℤ) |
3 | | 0zd 11266 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → 0 ∈ ℤ) |
4 | | etransclem7.n |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ ℕ) |
5 | 4 | nnzd 11357 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℤ) |
6 | 5 | ad2antrr 758 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → 𝑃 ∈ ℤ) |
7 | 5 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℤ) |
8 | | etransclem7.c |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) |
9 | 8 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝐶:(0...𝑀)⟶(0...𝑁)) |
10 | | 0zd 11266 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑀) → 0 ∈ ℤ) |
11 | | fzp1ss 12262 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀)) |
12 | 10, 11 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1...𝑀) → ((0 + 1)...𝑀) ⊆ (0...𝑀)) |
13 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (1...𝑀)) |
14 | | 1e0p1 11428 |
. . . . . . . . . . . . . . . . 17
⊢ 1 = (0 +
1) |
15 | 14 | oveq1i 6559 |
. . . . . . . . . . . . . . . 16
⊢
(1...𝑀) = ((0 +
1)...𝑀) |
16 | 13, 15 | syl6eleq 2698 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ((0 + 1)...𝑀)) |
17 | 12, 16 | sseldd 3569 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀)) |
18 | 17 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀)) |
19 | 9, 18 | ffvelrnd 6268 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝐶‘𝑗) ∈ (0...𝑁)) |
20 | 19 | elfzelzd 38471 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝐶‘𝑗) ∈ ℤ) |
21 | 7, 20 | zsubcld 11363 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝑃 − (𝐶‘𝑗)) ∈ ℤ) |
22 | 21 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → (𝑃 − (𝐶‘𝑗)) ∈ ℤ) |
23 | 3, 6, 22 | 3jca 1235 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → (0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶‘𝑗)) ∈ ℤ)) |
24 | 20 | zred 11358 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝐶‘𝑗) ∈ ℝ) |
25 | 24 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → (𝐶‘𝑗) ∈ ℝ) |
26 | 6 | zred 11358 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → 𝑃 ∈ ℝ) |
27 | | simpr 476 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → ¬ 𝑃 < (𝐶‘𝑗)) |
28 | 25, 26, 27 | nltled 10066 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → (𝐶‘𝑗) ≤ 𝑃) |
29 | 26, 25 | subge0d 10496 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → (0 ≤ (𝑃 − (𝐶‘𝑗)) ↔ (𝐶‘𝑗) ≤ 𝑃)) |
30 | 28, 29 | mpbird 246 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → 0 ≤ (𝑃 − (𝐶‘𝑗))) |
31 | | elfzle1 12215 |
. . . . . . . . . . 11
⊢ ((𝐶‘𝑗) ∈ (0...𝑁) → 0 ≤ (𝐶‘𝑗)) |
32 | 19, 31 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 0 ≤ (𝐶‘𝑗)) |
33 | 32 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → 0 ≤ (𝐶‘𝑗)) |
34 | 26, 25 | subge02d 10498 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → (0 ≤ (𝐶‘𝑗) ↔ (𝑃 − (𝐶‘𝑗)) ≤ 𝑃)) |
35 | 33, 34 | mpbid 221 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → (𝑃 − (𝐶‘𝑗)) ≤ 𝑃) |
36 | 23, 30, 35 | jca32 556 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶‘𝑗)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶‘𝑗)) ∧ (𝑃 − (𝐶‘𝑗)) ≤ 𝑃))) |
37 | | elfz2 12204 |
. . . . . . 7
⊢ ((𝑃 − (𝐶‘𝑗)) ∈ (0...𝑃) ↔ ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶‘𝑗)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶‘𝑗)) ∧ (𝑃 − (𝐶‘𝑗)) ≤ 𝑃))) |
38 | 36, 37 | sylibr 223 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → (𝑃 − (𝐶‘𝑗)) ∈ (0...𝑃)) |
39 | | permnn 12975 |
. . . . . 6
⊢ ((𝑃 − (𝐶‘𝑗)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) ∈ ℕ) |
40 | 38, 39 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) ∈ ℕ) |
41 | 40 | nnzd 11357 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) ∈ ℤ) |
42 | | etransclem7.j |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
43 | 42 | elfzelzd 38471 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ ℤ) |
44 | 43 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ) |
45 | | elfzelz 12213 |
. . . . . . . 8
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ) |
46 | 45 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ ℤ) |
47 | 44, 46 | zsubcld 11363 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝐽 − 𝑗) ∈ ℤ) |
48 | 47 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → (𝐽 − 𝑗) ∈ ℤ) |
49 | | elnn0z 11267 |
. . . . . 6
⊢ ((𝑃 − (𝐶‘𝑗)) ∈ ℕ0 ↔ ((𝑃 − (𝐶‘𝑗)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶‘𝑗)))) |
50 | 22, 30, 49 | sylanbrc 695 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → (𝑃 − (𝐶‘𝑗)) ∈
ℕ0) |
51 | | zexpcl 12737 |
. . . . 5
⊢ (((𝐽 − 𝑗) ∈ ℤ ∧ (𝑃 − (𝐶‘𝑗)) ∈ ℕ0) → ((𝐽 − 𝑗)↑(𝑃 − (𝐶‘𝑗))) ∈ ℤ) |
52 | 48, 50, 51 | syl2anc 691 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → ((𝐽 − 𝑗)↑(𝑃 − (𝐶‘𝑗))) ∈ ℤ) |
53 | 41, 52 | zmulcld 11364 |
. . 3
⊢ (((𝜑 ∧ 𝑗 ∈ (1...𝑀)) ∧ ¬ 𝑃 < (𝐶‘𝑗)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐶‘𝑗)))) ∈ ℤ) |
54 | 2, 53 | ifclda 4070 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐶‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐶‘𝑗))))) ∈ ℤ) |
55 | 1, 54 | fprodzcl 14523 |
1
⊢ (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐶‘𝑗))))) ∈ ℤ) |