Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem4 Structured version   Visualization version   GIF version

Theorem etransclem4 39131
Description: 𝐹 expressed as a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem4.a (𝜑𝐴 ⊆ ℂ)
etransclem4.p (𝜑𝑃 ∈ ℕ)
etransclem4.M (𝜑𝑀 ∈ ℕ0)
etransclem4.f 𝐹 = (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem4.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem4.e 𝐸 = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
Assertion
Ref Expression
etransclem4 (𝜑𝐹 = 𝐸)
Distinct variable groups:   𝐴,𝑗,𝑥   𝑗,𝑀   𝑃,𝑗   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝐸(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝐻(𝑥,𝑗)   𝑀(𝑥)

Proof of Theorem etransclem4
StepHypRef Expression
1 simpr 476 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
2 etransclem4.a . . . . . . . . . 10 (𝜑𝐴 ⊆ ℂ)
3 cnex 9896 . . . . . . . . . . 11 ℂ ∈ V
43ssex 4730 . . . . . . . . . 10 (𝐴 ⊆ ℂ → 𝐴 ∈ V)
5 mptexg 6389 . . . . . . . . . 10 (𝐴 ∈ V → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
62, 4, 53syl 18 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
76adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V)
8 etransclem4.h . . . . . . . . 9 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
98fvmpt2 6200 . . . . . . . 8 ((𝑗 ∈ (0...𝑀) ∧ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) ∈ V) → (𝐻𝑗) = (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
101, 7, 9syl2anc 691 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐻𝑗) = (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
11 ovex 6577 . . . . . . . 8 ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ V
1211a1i 11 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝐴) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ V)
1310, 12fvmpt2d 6202 . . . . . 6 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝐴) → ((𝐻𝑗)‘𝑥) = ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1413an32s 842 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → ((𝐻𝑗)‘𝑥) = ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1514prodeq2dv 14492 . . . 4 ((𝜑𝑥𝐴) → ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥) = ∏𝑗 ∈ (0...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
16 etransclem4.M . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
17 nn0uz 11598 . . . . . . 7 0 = (ℤ‘0)
1816, 17syl6eleq 2698 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘0))
1918adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝑀 ∈ (ℤ‘0))
202sselda 3568 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 ∈ ℂ)
2120adantr 480 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
22 elfzelz 12213 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
2322zcnd 11359 . . . . . . . 8 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
2423adantl 481 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
2521, 24subcld 10271 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → (𝑥𝑗) ∈ ℂ)
26 etransclem4.p . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
27 nnm1nn0 11211 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2826, 27syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2926nnnn0d 11228 . . . . . . . 8 (𝜑𝑃 ∈ ℕ0)
3028, 29ifcld 4081 . . . . . . 7 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
3130ad2antrr 758 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
3225, 31expcld 12870 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
33 oveq2 6557 . . . . . 6 (𝑗 = 0 → (𝑥𝑗) = (𝑥 − 0))
34 iftrue 4042 . . . . . 6 (𝑗 = 0 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
3533, 34oveq12d 6567 . . . . 5 (𝑗 = 0 → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 − 0)↑(𝑃 − 1)))
3619, 32, 35fprod1p 14537 . . . 4 ((𝜑𝑥𝐴) → ∏𝑗 ∈ (0...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = (((𝑥 − 0)↑(𝑃 − 1)) · ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
3720subid1d 10260 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥 − 0) = 𝑥)
3837oveq1d 6564 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥 − 0)↑(𝑃 − 1)) = (𝑥↑(𝑃 − 1)))
39 0p1e1 11009 . . . . . . . . 9 (0 + 1) = 1
4039oveq1i 6559 . . . . . . . 8 ((0 + 1)...𝑀) = (1...𝑀)
4140a1i 11 . . . . . . 7 (𝜑 → ((0 + 1)...𝑀) = (1...𝑀))
42 0red 9920 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ)
43 1red 9934 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ)
44 elfzelz 12213 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
4544zred 11358 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ)
46 0lt1 10429 . . . . . . . . . . . . . 14 0 < 1
4746a1i 11 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 0 < 1)
48 elfzle1 12215 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗)
4942, 43, 45, 47, 48ltletrd 10076 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → 0 < 𝑗)
5049gt0ne0d 10471 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → 𝑗 ≠ 0)
5150neneqd 2787 . . . . . . . . . 10 (𝑗 ∈ (1...𝑀) → ¬ 𝑗 = 0)
5251iffalsed 4047 . . . . . . . . 9 (𝑗 ∈ (1...𝑀) → if(𝑗 = 0, (𝑃 − 1), 𝑃) = 𝑃)
5352oveq2d 6565 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑗)↑𝑃))
5453adantl 481 . . . . . . 7 ((𝜑𝑗 ∈ (1...𝑀)) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑗)↑𝑃))
5541, 54prodeq12rdv 14496 . . . . . 6 (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))
5655adantr 480 . . . . 5 ((𝜑𝑥𝐴) → ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))
5738, 56oveq12d 6567 . . . 4 ((𝜑𝑥𝐴) → (((𝑥 − 0)↑(𝑃 − 1)) · ∏𝑗 ∈ ((0 + 1)...𝑀)((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
5815, 36, 573eqtrrd 2649 . . 3 ((𝜑𝑥𝐴) → ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)) = ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
5958mpteq2dva 4672 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥)))
60 etransclem4.f . 2 𝐹 = (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
61 etransclem4.e . 2 𝐸 = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))
6259, 60, 613eqtr4g 2669 1 (𝜑𝐹 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  ifcif 4036   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cmin 10145  cn 10897  0cn0 11169  cuz 11563  ...cfz 12197  cexp 12722  cprod 14474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475
This theorem is referenced by:  etransclem13  39140  etransclem29  39156
  Copyright terms: Public domain W3C validator