Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpinfsum | Structured version Visualization version GIF version |
Description: The value of the extended sum of infinitely many terms greater than one. (Contributed by Thierry Arnoux, 29-Jun-2017.) |
Ref | Expression |
---|---|
esumpinfsum.p | ⊢ Ⅎ𝑘𝜑 |
esumpinfsum.a | ⊢ Ⅎ𝑘𝐴 |
esumpinfsum.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumpinfsum.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ Fin) |
esumpinfsum.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumpinfsum.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ≤ 𝐵) |
esumpinfsum.5 | ⊢ (𝜑 → 𝑀 ∈ ℝ*) |
esumpinfsum.6 | ⊢ (𝜑 → 0 < 𝑀) |
Ref | Expression |
---|---|
esumpinfsum | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 12127 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | esumpinfsum.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | esumpinfsum.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
4 | esumpinfsum.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
5 | 4 | ex 449 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
6 | 3, 5 | ralrimi 2940 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
7 | esumpinfsum.a | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
8 | 7 | esumcl 29419 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
9 | 2, 6, 8 | syl2anc 691 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
10 | 1, 9 | sseldi 3566 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
11 | esumpinfsum.5 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ*) | |
12 | esumpinfsum.6 | . . . . . . 7 ⊢ (𝜑 → 0 < 𝑀) | |
13 | 0xr 9965 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
14 | xrltle 11858 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ 𝑀 ∈ ℝ*) → (0 < 𝑀 → 0 ≤ 𝑀)) | |
15 | 13, 11, 14 | sylancr 694 | . . . . . . 7 ⊢ (𝜑 → (0 < 𝑀 → 0 ≤ 𝑀)) |
16 | 12, 15 | mpd 15 | . . . . . 6 ⊢ (𝜑 → 0 ≤ 𝑀) |
17 | pnfge 11840 | . . . . . . 7 ⊢ (𝑀 ∈ ℝ* → 𝑀 ≤ +∞) | |
18 | 11, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≤ +∞) |
19 | pnfxr 9971 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
20 | elicc1 12090 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑀 ∈ (0[,]+∞) ↔ (𝑀 ∈ ℝ* ∧ 0 ≤ 𝑀 ∧ 𝑀 ≤ +∞))) | |
21 | 13, 19, 20 | mp2an 704 | . . . . . 6 ⊢ (𝑀 ∈ (0[,]+∞) ↔ (𝑀 ∈ ℝ* ∧ 0 ≤ 𝑀 ∧ 𝑀 ≤ +∞)) |
22 | 11, 16, 18, 21 | syl3anbrc 1239 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (0[,]+∞)) |
23 | nfcv 2751 | . . . . . 6 ⊢ Ⅎ𝑘𝑀 | |
24 | 7, 23 | esumcst 29452 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑀 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝑀 = ((#‘𝐴) ·e 𝑀)) |
25 | 2, 22, 24 | syl2anc 691 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝑀 = ((#‘𝐴) ·e 𝑀)) |
26 | esumpinfsum.2 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 ∈ Fin) | |
27 | hashinf 12984 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (#‘𝐴) = +∞) | |
28 | 2, 26, 27 | syl2anc 691 | . . . . 5 ⊢ (𝜑 → (#‘𝐴) = +∞) |
29 | 28 | oveq1d 6564 | . . . 4 ⊢ (𝜑 → ((#‘𝐴) ·e 𝑀) = (+∞ ·e 𝑀)) |
30 | xmulpnf2 11977 | . . . . 5 ⊢ ((𝑀 ∈ ℝ* ∧ 0 < 𝑀) → (+∞ ·e 𝑀) = +∞) | |
31 | 11, 12, 30 | syl2anc 691 | . . . 4 ⊢ (𝜑 → (+∞ ·e 𝑀) = +∞) |
32 | 25, 29, 31 | 3eqtrd 2648 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝑀 = +∞) |
33 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ∈ (0[,]+∞)) |
34 | esumpinfsum.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ≤ 𝐵) | |
35 | 3, 7, 2, 33, 4, 34 | esumlef 29451 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝑀 ≤ Σ*𝑘 ∈ 𝐴𝐵) |
36 | 32, 35 | eqbrtrrd 4607 | . 2 ⊢ (𝜑 → +∞ ≤ Σ*𝑘 ∈ 𝐴𝐵) |
37 | xgepnf 28904 | . . 3 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘 ∈ 𝐴𝐵 ↔ Σ*𝑘 ∈ 𝐴𝐵 = +∞)) | |
38 | 37 | biimpd 218 | . 2 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* → (+∞ ≤ Σ*𝑘 ∈ 𝐴𝐵 → Σ*𝑘 ∈ 𝐴𝐵 = +∞)) |
39 | 10, 36, 38 | sylc 63 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 Ⅎwnf 1699 ∈ wcel 1977 Ⅎwnfc 2738 ∀wral 2896 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 Fincfn 7841 0cc0 9815 +∞cpnf 9950 ℝ*cxr 9952 < clt 9953 ≤ cle 9954 ·e cxmu 11821 [,]cicc 12049 #chash 12979 Σ*cesum 29416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-fi 8200 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-xnn0 11241 df-z 11255 df-dec 11370 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-ioo 12050 df-ioc 12051 df-ico 12052 df-icc 12053 df-fz 12198 df-fzo 12335 df-fl 12455 df-mod 12531 df-seq 12664 df-exp 12723 df-fac 12923 df-bc 12952 df-hash 12980 df-shft 13655 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-limsup 14050 df-clim 14067 df-rlim 14068 df-sum 14265 df-ef 14637 df-sin 14639 df-cos 14640 df-pi 14642 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-starv 15783 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-unif 15792 df-hom 15793 df-cco 15794 df-rest 15906 df-topn 15907 df-0g 15925 df-gsum 15926 df-topgen 15927 df-pt 15928 df-prds 15931 df-ordt 15984 df-xrs 15985 df-qtop 15990 df-imas 15991 df-xps 15993 df-mre 16069 df-mrc 16070 df-acs 16072 df-ps 17023 df-tsr 17024 df-plusf 17064 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mhm 17158 df-submnd 17159 df-grp 17248 df-minusg 17249 df-sbg 17250 df-mulg 17364 df-subg 17414 df-cntz 17573 df-cmn 18018 df-abl 18019 df-mgp 18313 df-ur 18325 df-ring 18372 df-cring 18373 df-subrg 18601 df-abv 18640 df-lmod 18688 df-scaf 18689 df-sra 18993 df-rgmod 18994 df-psmet 19559 df-xmet 19560 df-met 19561 df-bl 19562 df-mopn 19563 df-fbas 19564 df-fg 19565 df-cnfld 19568 df-top 20521 df-bases 20522 df-topon 20523 df-topsp 20524 df-cld 20633 df-ntr 20634 df-cls 20635 df-nei 20712 df-lp 20750 df-perf 20751 df-cn 20841 df-cnp 20842 df-haus 20929 df-tx 21175 df-hmeo 21368 df-fil 21460 df-fm 21552 df-flim 21553 df-flf 21554 df-tmd 21686 df-tgp 21687 df-tsms 21740 df-trg 21773 df-xms 21935 df-ms 21936 df-tms 21937 df-nm 22197 df-ngp 22198 df-nrg 22200 df-nlm 22201 df-ii 22488 df-cncf 22489 df-limc 23436 df-dv 23437 df-log 24107 df-esum 29417 |
This theorem is referenced by: hasheuni 29474 |
Copyright terms: Public domain | W3C validator |