Step | Hyp | Ref
| Expression |
1 | | df-esum 29417 |
. . . 4
⊢
Σ*𝑘
∈ 𝐴𝐵 = ∪
((ℝ*𝑠 ↾s (0[,]+∞))
tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
2 | | xrge0base 29016 |
. . . . . 6
⊢
(0[,]+∞) = (Base‘(ℝ*𝑠
↾s (0[,]+∞))) |
3 | | xrge00 29017 |
. . . . . 6
⊢ 0 =
(0g‘(ℝ*𝑠
↾s (0[,]+∞))) |
4 | | xrge0cmn 19607 |
. . . . . . 7
⊢
(ℝ*𝑠 ↾s
(0[,]+∞)) ∈ CMnd |
5 | 4 | a1i 11 |
. . . . . 6
⊢ (𝜑 →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
6 | | xrge0tps 29316 |
. . . . . . 7
⊢
(ℝ*𝑠 ↾s
(0[,]+∞)) ∈ TopSp |
7 | 6 | a1i 11 |
. . . . . 6
⊢ (𝜑 →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ TopSp) |
8 | | esumpfinvalf.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ Fin) |
9 | | esumpfinvalf.2 |
. . . . . . 7
⊢
Ⅎ𝑘𝜑 |
10 | | esumpfinvalf.1 |
. . . . . . 7
⊢
Ⅎ𝑘𝐴 |
11 | | nfcv 2751 |
. . . . . . 7
⊢
Ⅎ𝑘(0[,]+∞) |
12 | | icossicc 12131 |
. . . . . . . 8
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
13 | | esumpfinvalf.b |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
14 | 12, 13 | sseldi 3566 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
15 | | eqid 2610 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
16 | 9, 10, 11, 14, 15 | fmptdF 28836 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
17 | | c0ex 9913 |
. . . . . . . 8
⊢ 0 ∈
V |
18 | 17 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
V) |
19 | 16, 8, 18 | fdmfifsupp 8168 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) finSupp 0) |
20 | | xrge0topn 29317 |
. . . . . . 7
⊢
(TopOpen‘(ℝ*𝑠
↾s (0[,]+∞))) = ((ordTop‘ ≤ )
↾t (0[,]+∞)) |
21 | 20 | eqcomi 2619 |
. . . . . 6
⊢
((ordTop‘ ≤ ) ↾t (0[,]+∞)) =
(TopOpen‘(ℝ*𝑠 ↾s
(0[,]+∞))) |
22 | | xrhaus 28925 |
. . . . . . . 8
⊢
(ordTop‘ ≤ ) ∈ Haus |
23 | | ovex 6577 |
. . . . . . . 8
⊢
(0[,]+∞) ∈ V |
24 | | resthaus 20982 |
. . . . . . . 8
⊢
(((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V)
→ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈
Haus) |
25 | 22, 23, 24 | mp2an 704 |
. . . . . . 7
⊢
((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈
Haus |
26 | 25 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ((ordTop‘ ≤ )
↾t (0[,]+∞)) ∈ Haus) |
27 | 2, 3, 5, 7, 8, 16,
19, 21, 26 | haustsmsid 21754 |
. . . . 5
⊢ (𝜑 →
((ℝ*𝑠 ↾s (0[,]+∞))
tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) =
{((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
28 | 27 | unieqd 4382 |
. . . 4
⊢ (𝜑 → ∪ ((ℝ*𝑠
↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ∪
{((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
29 | 1, 28 | syl5eq 2656 |
. . 3
⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ∪
{((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
30 | | ovex 6577 |
. . . 4
⊢
((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V |
31 | 30 | unisn 4387 |
. . 3
⊢ ∪ {((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))} =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) |
32 | 29, 31 | syl6eq 2660 |
. 2
⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
33 | | nfcv 2751 |
. . . 4
⊢
Ⅎ𝑘(0[,)+∞) |
34 | 9, 10, 33, 13, 15 | fmptdF 28836 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) |
35 | | esumpfinvallem 29463 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) →
(ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
36 | 8, 34, 35 | syl2anc 691 |
. 2
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
37 | | rge0ssre 12151 |
. . . . . . . 8
⊢
(0[,)+∞) ⊆ ℝ |
38 | | ax-resscn 9872 |
. . . . . . . 8
⊢ ℝ
⊆ ℂ |
39 | 37, 38 | sstri 3577 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℂ |
40 | 39, 13 | sseldi 3566 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
41 | 40 | sbt 2407 |
. . . . 5
⊢ [𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
42 | | sbim 2383 |
. . . . . 6
⊢ ([𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ)) |
43 | | sban 2387 |
. . . . . . . 8
⊢ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ 𝐴)) |
44 | 9 | sbf 2368 |
. . . . . . . . 9
⊢ ([𝑙 / 𝑘]𝜑 ↔ 𝜑) |
45 | 10 | clelsb3f 28704 |
. . . . . . . . 9
⊢ ([𝑙 / 𝑘]𝑘 ∈ 𝐴 ↔ 𝑙 ∈ 𝐴) |
46 | 44, 45 | anbi12i 729 |
. . . . . . . 8
⊢ (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑙 ∈ 𝐴)) |
47 | 43, 46 | bitri 263 |
. . . . . . 7
⊢ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑙 ∈ 𝐴)) |
48 | | sbsbc 3406 |
. . . . . . . 8
⊢ ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ [𝑙 / 𝑘]𝐵 ∈ ℂ) |
49 | | vex 3176 |
. . . . . . . . 9
⊢ 𝑙 ∈ V |
50 | | sbcel1g 3939 |
. . . . . . . . 9
⊢ (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ)) |
51 | 49, 50 | ax-mp 5 |
. . . . . . . 8
⊢
([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ) |
52 | 48, 51 | bitri 263 |
. . . . . . 7
⊢ ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ) |
53 | 47, 52 | imbi12i 339 |
. . . . . 6
⊢ (([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ)) |
54 | 42, 53 | bitri 263 |
. . . . 5
⊢ ([𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ)) |
55 | 41, 54 | mpbi 219 |
. . . 4
⊢ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ) |
56 | 8, 55 | gsumfsum 19632 |
. . 3
⊢ (𝜑 → (ℂfld
Σg (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵)) = Σ𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐵) |
57 | | nfcv 2751 |
. . . . 5
⊢
Ⅎ𝑙𝐴 |
58 | | nfcv 2751 |
. . . . 5
⊢
Ⅎ𝑙𝐵 |
59 | | nfcsb1v 3515 |
. . . . 5
⊢
Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐵 |
60 | | csbeq1a 3508 |
. . . . 5
⊢ (𝑘 = 𝑙 → 𝐵 = ⦋𝑙 / 𝑘⦌𝐵) |
61 | 10, 57, 58, 59, 60 | cbvmptf 4676 |
. . . 4
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵) |
62 | 61 | oveq2i 6560 |
. . 3
⊢
(ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = (ℂfld
Σg (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵)) |
63 | 60, 57, 10, 58, 59 | cbvsum 14273 |
. . 3
⊢
Σ𝑘 ∈
𝐴 𝐵 = Σ𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐵 |
64 | 56, 62, 63 | 3eqtr4g 2669 |
. 2
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) |
65 | 32, 36, 64 | 3eqtr2d 2650 |
1
⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |