Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpfinvalf Structured version   Visualization version   GIF version

Theorem esumpfinvalf 29465
Description: Same as esumpfinval 29464, minus distinct variable restrictions. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Proof shortened by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
esumpfinvalf.1 𝑘𝐴
esumpfinvalf.2 𝑘𝜑
esumpfinvalf.a (𝜑𝐴 ∈ Fin)
esumpfinvalf.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
esumpfinvalf (𝜑 → Σ*𝑘𝐴𝐵 = Σ𝑘𝐴 𝐵)

Proof of Theorem esumpfinvalf
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 df-esum 29417 . . . 4 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
2 xrge0base 29016 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
3 xrge00 29017 . . . . . 6 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
4 xrge0cmn 19607 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
54a1i 11 . . . . . 6 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
6 xrge0tps 29316 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
76a1i 11 . . . . . 6 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
8 esumpfinvalf.a . . . . . 6 (𝜑𝐴 ∈ Fin)
9 esumpfinvalf.2 . . . . . . 7 𝑘𝜑
10 esumpfinvalf.1 . . . . . . 7 𝑘𝐴
11 nfcv 2751 . . . . . . 7 𝑘(0[,]+∞)
12 icossicc 12131 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
13 esumpfinvalf.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
1412, 13sseldi 3566 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
15 eqid 2610 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
169, 10, 11, 14, 15fmptdF 28836 . . . . . 6 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
17 c0ex 9913 . . . . . . . 8 0 ∈ V
1817a1i 11 . . . . . . 7 (𝜑 → 0 ∈ V)
1916, 8, 18fdmfifsupp 8168 . . . . . 6 (𝜑 → (𝑘𝐴𝐵) finSupp 0)
20 xrge0topn 29317 . . . . . . 7 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2120eqcomi 2619 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
22 xrhaus 28925 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Haus
23 ovex 6577 . . . . . . . 8 (0[,]+∞) ∈ V
24 resthaus 20982 . . . . . . . 8 (((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
2522, 23, 24mp2an 704 . . . . . . 7 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus
2625a1i 11 . . . . . 6 (𝜑 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
272, 3, 5, 7, 8, 16, 19, 21, 26haustsmsid 21754 . . . . 5 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
2827unieqd 4382 . . . 4 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
291, 28syl5eq 2656 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
30 ovex 6577 . . . 4 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ V
3130unisn 4387 . . 3 {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))} = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))
3229, 31syl6eq 2660 . 2 (𝜑 → Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
33 nfcv 2751 . . . 4 𝑘(0[,)+∞)
349, 10, 33, 13, 15fmptdF 28836 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,)+∞))
35 esumpfinvallem 29463 . . 3 ((𝐴 ∈ Fin ∧ (𝑘𝐴𝐵):𝐴⟶(0[,)+∞)) → (ℂfld Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
368, 34, 35syl2anc 691 . 2 (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
37 rge0ssre 12151 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
38 ax-resscn 9872 . . . . . . . 8 ℝ ⊆ ℂ
3937, 38sstri 3577 . . . . . . 7 (0[,)+∞) ⊆ ℂ
4039, 13sseldi 3566 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4140sbt 2407 . . . . 5 [𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
42 sbim 2383 . . . . . 6 ([𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ([𝑙 / 𝑘](𝜑𝑘𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ))
43 sban 2387 . . . . . . . 8 ([𝑙 / 𝑘](𝜑𝑘𝐴) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘𝐴))
449sbf 2368 . . . . . . . . 9 ([𝑙 / 𝑘]𝜑𝜑)
4510clelsb3f 28704 . . . . . . . . 9 ([𝑙 / 𝑘]𝑘𝐴𝑙𝐴)
4644, 45anbi12i 729 . . . . . . . 8 (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘𝐴) ↔ (𝜑𝑙𝐴))
4743, 46bitri 263 . . . . . . 7 ([𝑙 / 𝑘](𝜑𝑘𝐴) ↔ (𝜑𝑙𝐴))
48 sbsbc 3406 . . . . . . . 8 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ [𝑙 / 𝑘]𝐵 ∈ ℂ)
49 vex 3176 . . . . . . . . 9 𝑙 ∈ V
50 sbcel1g 3939 . . . . . . . . 9 (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ))
5149, 50ax-mp 5 . . . . . . . 8 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ)
5248, 51bitri 263 . . . . . . 7 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ)
5347, 52imbi12i 339 . . . . . 6 (([𝑙 / 𝑘](𝜑𝑘𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ) ↔ ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ))
5442, 53bitri 263 . . . . 5 ([𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ))
5541, 54mpbi 219 . . . 4 ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ)
568, 55gsumfsum 19632 . . 3 (𝜑 → (ℂfld Σg (𝑙𝐴𝑙 / 𝑘𝐵)) = Σ𝑙𝐴 𝑙 / 𝑘𝐵)
57 nfcv 2751 . . . . 5 𝑙𝐴
58 nfcv 2751 . . . . 5 𝑙𝐵
59 nfcsb1v 3515 . . . . 5 𝑘𝑙 / 𝑘𝐵
60 csbeq1a 3508 . . . . 5 (𝑘 = 𝑙𝐵 = 𝑙 / 𝑘𝐵)
6110, 57, 58, 59, 60cbvmptf 4676 . . . 4 (𝑘𝐴𝐵) = (𝑙𝐴𝑙 / 𝑘𝐵)
6261oveq2i 6560 . . 3 (ℂfld Σg (𝑘𝐴𝐵)) = (ℂfld Σg (𝑙𝐴𝑙 / 𝑘𝐵))
6360, 57, 10, 58, 59cbvsum 14273 . . 3 Σ𝑘𝐴 𝐵 = Σ𝑙𝐴 𝑙 / 𝑘𝐵
6456, 62, 633eqtr4g 2669 . 2 (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
6532, 36, 643eqtr2d 2650 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wnf 1699  [wsb 1867  wcel 1977  wnfc 2738  Vcvv 3173  [wsbc 3402  csb 3499  {csn 4125   cuni 4372  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  0cc0 9815  +∞cpnf 9950  cle 9954  [,)cico 12048  [,]cicc 12049  Σcsu 14264  s cress 15696  t crest 15904  TopOpenctopn 15905   Σg cgsu 15924  ordTopcordt 15982  *𝑠cxrs 15983  CMndccmn 18016  fldccnfld 19567  TopSpctps 20519  Hauscha 20922   tsums ctsu 21739  Σ*cesum 29416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-xadd 11823  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-ordt 15984  df-xrs 15985  df-ps 17023  df-tsr 17024  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-cn 20841  df-haus 20929  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-tsms 21740  df-esum 29417
This theorem is referenced by:  volfiniune  29620
  Copyright terms: Public domain W3C validator