Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrchom Structured version   Visualization version   GIF version

Theorem estrchom 16590
 Description: The morphisms between extensible structures are mappings between their base sets. (Contributed by AV, 7-Mar-2020.)
Hypotheses
Ref Expression
estrcbas.c 𝐶 = (ExtStrCat‘𝑈)
estrcbas.u (𝜑𝑈𝑉)
estrchomfval.h 𝐻 = (Hom ‘𝐶)
estrchom.x (𝜑𝑋𝑈)
estrchom.y (𝜑𝑌𝑈)
estrchom.a 𝐴 = (Base‘𝑋)
estrchom.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
estrchom (𝜑 → (𝑋𝐻𝑌) = (𝐵𝑚 𝐴))

Proof of Theorem estrchom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 estrcbas.c . . 3 𝐶 = (ExtStrCat‘𝑈)
2 estrcbas.u . . 3 (𝜑𝑈𝑉)
3 estrchomfval.h . . 3 𝐻 = (Hom ‘𝐶)
41, 2, 3estrchomfval 16589 . 2 (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))
5 fveq2 6103 . . . . 5 (𝑦 = 𝑌 → (Base‘𝑦) = (Base‘𝑌))
6 fveq2 6103 . . . . 5 (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋))
75, 6oveqan12rd 6569 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ((Base‘𝑦) ↑𝑚 (Base‘𝑥)) = ((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
8 estrchom.b . . . . 5 𝐵 = (Base‘𝑌)
9 estrchom.a . . . . 5 𝐴 = (Base‘𝑋)
108, 9oveq12i 6561 . . . 4 (𝐵𝑚 𝐴) = ((Base‘𝑌) ↑𝑚 (Base‘𝑋))
117, 10syl6eqr 2662 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → ((Base‘𝑦) ↑𝑚 (Base‘𝑥)) = (𝐵𝑚 𝐴))
1211adantl 481 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((Base‘𝑦) ↑𝑚 (Base‘𝑥)) = (𝐵𝑚 𝐴))
13 estrchom.x . 2 (𝜑𝑋𝑈)
14 estrchom.y . 2 (𝜑𝑌𝑈)
15 ovex 6577 . . 3 (𝐵𝑚 𝐴) ∈ V
1615a1i 11 . 2 (𝜑 → (𝐵𝑚 𝐴) ∈ V)
174, 12, 13, 14, 16ovmpt2d 6686 1 (𝜑 → (𝑋𝐻𝑌) = (𝐵𝑚 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  Basecbs 15695  Hom chom 15779  ExtStrCatcestrc 16585 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-hom 15793  df-cco 15794  df-estrc 16586 This theorem is referenced by:  elestrchom  16591  funcestrcsetclem8  16610  funcestrcsetclem9  16611  fthestrcsetc  16613  fullestrcsetc  16614  funcsetcestrclem8  16625
 Copyright terms: Public domain W3C validator