Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem3 Structured version   Visualization version   GIF version

Theorem erngdvlem3 35296
Description: Lemma for eringring 35298. (Contributed by NM, 6-Aug-2013.)
Hypotheses
Ref Expression
ernggrp.h 𝐻 = (LHyp‘𝐾)
ernggrp.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
erngdv.b 𝐵 = (Base‘𝐾)
erngdv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
erngdv.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
erngdv.p 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
erngdv.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
erngdv.i 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
erngrnglem.m + = (𝑎𝐸, 𝑏𝐸 ↦ (𝑎𝑏))
Assertion
Ref Expression
erngdvlem3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
Distinct variable groups:   𝐵,𝑓   𝑎,𝑏,𝐸   𝑓,𝑎,𝐾,𝑏   𝑓,𝐻   𝑇,𝑎,𝑏,𝑓   𝑊,𝑎,𝑏,𝑓
Allowed substitution hints:   𝐵(𝑎,𝑏)   𝐷(𝑓,𝑎,𝑏)   𝑃(𝑓,𝑎,𝑏)   + (𝑓,𝑎,𝑏)   𝐸(𝑓)   𝐻(𝑎,𝑏)   𝐼(𝑓,𝑎,𝑏)   0 (𝑓,𝑎,𝑏)

Proof of Theorem erngdvlem3
Dummy variables 𝑡 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h . . . 4 𝐻 = (LHyp‘𝐾)
2 erngdv.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 erngdv.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 ernggrp.d . . . 4 𝐷 = ((EDRing‘𝐾)‘𝑊)
5 eqid 2610 . . . 4 (Base‘𝐷) = (Base‘𝐷)
61, 2, 3, 4, 5erngbase 35107 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
76eqcomd 2616 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
8 eqid 2610 . . . 4 (+g𝐷) = (+g𝐷)
91, 2, 3, 4, 8erngfplus 35108 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
10 erngdv.p . . 3 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
119, 10syl6reqr 2663 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑃 = (+g𝐷))
12 eqid 2610 . . . 4 (.r𝐷) = (.r𝐷)
131, 2, 3, 4, 12erngfmul 35111 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (.r𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑎𝑏)))
14 erngrnglem.m . . 3 + = (𝑎𝐸, 𝑏𝐸 ↦ (𝑎𝑏))
1513, 14syl6reqr 2663 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (.r𝐷))
16 erngdv.b . . 3 𝐵 = (Base‘𝐾)
17 erngdv.o . . 3 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
18 erngdv.i . . 3 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
191, 4, 16, 2, 3, 10, 17, 18erngdvlem1 35294 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
2015oveqd 6566 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 + 𝑡) = (𝑠(.r𝐷)𝑡))
21203ad2ant1 1075 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 + 𝑡) = (𝑠(.r𝐷)𝑡))
221, 2, 3, 4, 12erngmul 35112 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑠𝑡))
23223impb 1252 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠(.r𝐷)𝑡) = (𝑠𝑡))
2421, 23eqtrd 2644 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 + 𝑡) = (𝑠𝑡))
251, 3tendococl 35078 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑡) ∈ 𝐸)
2624, 25eqeltrd 2688 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠 + 𝑡) ∈ 𝐸)
27 coass 5571 . . 3 ((𝑠𝑡) ∘ 𝑢) = (𝑠 ∘ (𝑡𝑢))
2815oveqd 6566 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑠 + 𝑡) + 𝑢) = ((𝑠 + 𝑡)(.r𝐷)𝑢))
2928adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡) + 𝑢) = ((𝑠 + 𝑡)(.r𝐷)𝑢))
30 simpl 472 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
31263adant3r3 1268 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑡) ∈ 𝐸)
32 simpr3 1062 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑢𝐸)
331, 2, 3, 4, 12erngmul 35112 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠 + 𝑡) ∈ 𝐸𝑢𝐸)) → ((𝑠 + 𝑡)(.r𝐷)𝑢) = ((𝑠 + 𝑡) ∘ 𝑢))
3430, 31, 32, 33syl12anc 1316 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡)(.r𝐷)𝑢) = ((𝑠 + 𝑡) ∘ 𝑢))
3515oveqdr 6573 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑡) = (𝑠(.r𝐷)𝑡))
36223adantr3 1215 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑠𝑡))
3735, 36eqtrd 2644 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑡) = (𝑠𝑡))
3837coeq1d 5205 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡) ∘ 𝑢) = ((𝑠𝑡) ∘ 𝑢))
3929, 34, 383eqtrd 2648 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡) + 𝑢) = ((𝑠𝑡) ∘ 𝑢))
4015oveqd 6566 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 + (𝑡 + 𝑢)) = (𝑠(.r𝐷)(𝑡 + 𝑢)))
4140adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡 + 𝑢)) = (𝑠(.r𝐷)(𝑡 + 𝑢)))
42 simpr1 1060 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → 𝑠𝐸)
4315oveqdr 6573 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡 + 𝑢) = (𝑡(.r𝐷)𝑢))
441, 2, 3, 4, 12erngmul 35112 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑢𝐸)) → (𝑡(.r𝐷)𝑢) = (𝑡𝑢))
45443adantr1 1213 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡(.r𝐷)𝑢) = (𝑡𝑢))
4643, 45eqtrd 2644 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡 + 𝑢) = (𝑡𝑢))
471, 3tendococl 35078 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑢𝐸) → (𝑡𝑢) ∈ 𝐸)
48473adant3r1 1266 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑢) ∈ 𝐸)
4946, 48eqeltrd 2688 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡 + 𝑢) ∈ 𝐸)
501, 2, 3, 4, 12erngmul 35112 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡 + 𝑢) ∈ 𝐸)) → (𝑠(.r𝐷)(𝑡 + 𝑢)) = (𝑠 ∘ (𝑡 + 𝑢)))
5130, 42, 49, 50syl12anc 1316 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)(𝑡 + 𝑢)) = (𝑠 ∘ (𝑡 + 𝑢)))
5246coeq2d 5206 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 ∘ (𝑡 + 𝑢)) = (𝑠 ∘ (𝑡𝑢)))
5341, 51, 523eqtrd 2648 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡 + 𝑢)) = (𝑠 ∘ (𝑡𝑢)))
5427, 39, 533eqtr4a 2670 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡) + 𝑢) = (𝑠 + (𝑡 + 𝑢)))
551, 2, 3, 10tendodi1 35090 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 ∘ (𝑡𝑃𝑢)) = ((𝑠𝑡)𝑃(𝑠𝑢)))
5615oveqd 6566 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 + (𝑡𝑃𝑢)) = (𝑠(.r𝐷)(𝑡𝑃𝑢)))
5756adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡𝑃𝑢)) = (𝑠(.r𝐷)(𝑡𝑃𝑢)))
581, 2, 3, 10tendoplcl 35087 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑡𝐸𝑢𝐸) → (𝑡𝑃𝑢) ∈ 𝐸)
59583adant3r1 1266 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑡𝑃𝑢) ∈ 𝐸)
601, 2, 3, 4, 12erngmul 35112 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ (𝑡𝑃𝑢) ∈ 𝐸)) → (𝑠(.r𝐷)(𝑡𝑃𝑢)) = (𝑠 ∘ (𝑡𝑃𝑢)))
6130, 42, 59, 60syl12anc 1316 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)(𝑡𝑃𝑢)) = (𝑠 ∘ (𝑡𝑃𝑢)))
6257, 61eqtrd 2644 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡𝑃𝑢)) = (𝑠 ∘ (𝑡𝑃𝑢)))
6315oveqdr 6573 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑢) = (𝑠(.r𝐷)𝑢))
641, 2, 3, 4, 12erngmul 35112 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑢) = (𝑠𝑢))
65643adantr2 1214 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠(.r𝐷)𝑢) = (𝑠𝑢))
6663, 65eqtrd 2644 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + 𝑢) = (𝑠𝑢))
6737, 66oveq12d 6567 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑡)𝑃(𝑠 + 𝑢)) = ((𝑠𝑡)𝑃(𝑠𝑢)))
6855, 62, 673eqtr4d 2654 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠 + (𝑡𝑃𝑢)) = ((𝑠 + 𝑡)𝑃(𝑠 + 𝑢)))
691, 2, 3, 10tendodi2 35091 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡) ∘ 𝑢) = ((𝑠𝑢)𝑃(𝑡𝑢)))
7015oveqd 6566 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠𝑃𝑡)(.r𝐷)𝑢))
7170adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠𝑃𝑡)(.r𝐷)𝑢))
721, 2, 3, 10tendoplcl 35087 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑃𝑡) ∈ 𝐸)
73723adant3r3 1268 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → (𝑠𝑃𝑡) ∈ 𝐸)
741, 2, 3, 4, 12erngmul 35112 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑠𝑃𝑡) ∈ 𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)(.r𝐷)𝑢) = ((𝑠𝑃𝑡) ∘ 𝑢))
7530, 73, 32, 74syl12anc 1316 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)(.r𝐷)𝑢) = ((𝑠𝑃𝑡) ∘ 𝑢))
7671, 75eqtrd 2644 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠𝑃𝑡) ∘ 𝑢))
7766, 46oveq12d 6567 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠 + 𝑢)𝑃(𝑡 + 𝑢)) = ((𝑠𝑢)𝑃(𝑡𝑢)))
7869, 76, 773eqtr4d 2654 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡) + 𝑢) = ((𝑠 + 𝑢)𝑃(𝑡 + 𝑢)))
791, 2, 3tendoidcl 35075 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ 𝐸)
8015oveqd 6566 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝑇) + 𝑠) = (( I ↾ 𝑇)(.r𝐷)𝑠))
8180adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇) + 𝑠) = (( I ↾ 𝑇)(.r𝐷)𝑠))
82 simpl 472 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8379adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → ( I ↾ 𝑇) ∈ 𝐸)
84 simpr 476 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → 𝑠𝐸)
851, 2, 3, 4, 12erngmul 35112 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (( I ↾ 𝑇) ∈ 𝐸𝑠𝐸)) → (( I ↾ 𝑇)(.r𝐷)𝑠) = (( I ↾ 𝑇) ∘ 𝑠))
8682, 83, 84, 85syl12anc 1316 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇)(.r𝐷)𝑠) = (( I ↾ 𝑇) ∘ 𝑠))
871, 2, 3tendo1mul 35076 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇) ∘ 𝑠) = 𝑠)
8881, 86, 873eqtrd 2648 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (( I ↾ 𝑇) + 𝑠) = 𝑠)
8915oveqd 6566 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 + ( I ↾ 𝑇)) = (𝑠(.r𝐷)( I ↾ 𝑇)))
9089adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠 + ( I ↾ 𝑇)) = (𝑠(.r𝐷)( I ↾ 𝑇)))
911, 2, 3, 4, 12erngmul 35112 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸 ∧ ( I ↾ 𝑇) ∈ 𝐸)) → (𝑠(.r𝐷)( I ↾ 𝑇)) = (𝑠 ∘ ( I ↾ 𝑇)))
9282, 84, 83, 91syl12anc 1316 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠(.r𝐷)( I ↾ 𝑇)) = (𝑠 ∘ ( I ↾ 𝑇)))
931, 2, 3tendo1mulr 35077 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠 ∘ ( I ↾ 𝑇)) = 𝑠)
9490, 92, 933eqtrd 2648 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑠 + ( I ↾ 𝑇)) = 𝑠)
957, 11, 15, 19, 26, 54, 68, 78, 79, 88, 94isringd 18408 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cmpt 4643   I cid 4948  ccnv 5037  cres 5040  ccom 5042  cfv 5804  (class class class)co 6549  cmpt2 6551  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  Ringcrg 18370  HLchlt 33655  LHypclh 34288  LTrncltrn 34405  TEndoctendo 35058  EDRingcedring 35059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-riotaBAD 33257
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-undef 7286  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-0g 15925  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-mgp 18313  df-ring 18372  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292  df-laut 34293  df-ldil 34408  df-ltrn 34409  df-trl 34464  df-tendo 35061  df-edring 35063
This theorem is referenced by:  erngdvlem4  35297  eringring  35298
  Copyright terms: Public domain W3C validator