Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  erdisj Structured version   Visualization version   GIF version

Theorem erdisj 7681
 Description: Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
erdisj (𝑅 Er 𝑋 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))

Proof of Theorem erdisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neq0 3889 . . . 4 (¬ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∃𝑥 𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅))
2 simpl 472 . . . . . . 7 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑅 Er 𝑋)
3 elin 3758 . . . . . . . . . . 11 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) ↔ (𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑅))
43simplbi 475 . . . . . . . . . 10 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → 𝑥 ∈ [𝐴]𝑅)
54adantl 481 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑥 ∈ [𝐴]𝑅)
6 vex 3176 . . . . . . . . . 10 𝑥 ∈ V
7 ecexr 7634 . . . . . . . . . . 11 (𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
85, 7syl 17 . . . . . . . . . 10 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴 ∈ V)
9 elecg 7672 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
106, 8, 9sylancr 694 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
115, 10mpbid 221 . . . . . . . 8 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴𝑅𝑥)
123simprbi 479 . . . . . . . . . 10 (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → 𝑥 ∈ [𝐵]𝑅)
1312adantl 481 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝑥 ∈ [𝐵]𝑅)
14 ecexr 7634 . . . . . . . . . . 11 (𝑥 ∈ [𝐵]𝑅𝐵 ∈ V)
1513, 14syl 17 . . . . . . . . . 10 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐵 ∈ V)
16 elecg 7672 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
176, 15, 16sylancr 694 . . . . . . . . 9 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
1813, 17mpbid 221 . . . . . . . 8 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐵𝑅𝑥)
192, 11, 18ertr4d 7648 . . . . . . 7 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → 𝐴𝑅𝐵)
202, 19erthi 7680 . . . . . 6 ((𝑅 Er 𝑋𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅)) → [𝐴]𝑅 = [𝐵]𝑅)
2120ex 449 . . . . 5 (𝑅 Er 𝑋 → (𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅))
2221exlimdv 1848 . . . 4 (𝑅 Er 𝑋 → (∃𝑥 𝑥 ∈ ([𝐴]𝑅 ∩ [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅))
231, 22syl5bi 231 . . 3 (𝑅 Er 𝑋 → (¬ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ → [𝐴]𝑅 = [𝐵]𝑅))
2423orrd 392 . 2 (𝑅 Er 𝑋 → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ [𝐴]𝑅 = [𝐵]𝑅))
2524orcomd 402 1 (𝑅 Er 𝑋 → ([𝐴]𝑅 = [𝐵]𝑅 ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  Vcvv 3173   ∩ cin 3539  ∅c0 3874   class class class wbr 4583   Er wer 7626  [cec 7627 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-er 7629  df-ec 7631 This theorem is referenced by:  qsdisj  7711
 Copyright terms: Public domain W3C validator