Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erclwwlksref Structured version   Visualization version   GIF version

Theorem erclwwlksref 41241
Description: is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 29-Apr-2021.)
Hypothesis
Ref Expression
erclwwlks.r = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalkS‘𝐺) ∧ 𝑤 ∈ (ClWWalkS‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlksref (𝑥 ∈ (ClWWalkS‘𝐺) ↔ 𝑥 𝑥)
Distinct variable groups:   𝑛,𝐺,𝑢,𝑤   𝑥,𝑛,𝑢,𝑤
Allowed substitution hints:   (𝑥,𝑤,𝑢,𝑛)   𝐺(𝑥)

Proof of Theorem erclwwlksref
StepHypRef Expression
1 anidm 674 . . . 4 ((𝑥 ∈ (ClWWalkS‘𝐺) ∧ 𝑥 ∈ (ClWWalkS‘𝐺)) ↔ 𝑥 ∈ (ClWWalkS‘𝐺))
21anbi1i 727 . . 3 (((𝑥 ∈ (ClWWalkS‘𝐺) ∧ 𝑥 ∈ (ClWWalkS‘𝐺)) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ (ClWWalkS‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))
3 df-3an 1033 . . 3 ((𝑥 ∈ (ClWWalkS‘𝐺) ∧ 𝑥 ∈ (ClWWalkS‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) ↔ ((𝑥 ∈ (ClWWalkS‘𝐺) ∧ 𝑥 ∈ (ClWWalkS‘𝐺)) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))
4 eqid 2610 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
54clwwlkbp 41191 . . . . 5 (𝑥 ∈ (ClWWalkS‘𝐺) → (𝐺 ∈ V ∧ 𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅))
6 cshw0 13391 . . . . . . 7 (𝑥 ∈ Word (Vtx‘𝐺) → (𝑥 cyclShift 0) = 𝑥)
7 0nn0 11184 . . . . . . . . . 10 0 ∈ ℕ0
87a1i 11 . . . . . . . . 9 (𝑥 ∈ Word (Vtx‘𝐺) → 0 ∈ ℕ0)
9 lencl 13179 . . . . . . . . 9 (𝑥 ∈ Word (Vtx‘𝐺) → (#‘𝑥) ∈ ℕ0)
10 hashge0 13037 . . . . . . . . 9 (𝑥 ∈ Word (Vtx‘𝐺) → 0 ≤ (#‘𝑥))
11 elfz2nn0 12300 . . . . . . . . 9 (0 ∈ (0...(#‘𝑥)) ↔ (0 ∈ ℕ0 ∧ (#‘𝑥) ∈ ℕ0 ∧ 0 ≤ (#‘𝑥)))
128, 9, 10, 11syl3anbrc 1239 . . . . . . . 8 (𝑥 ∈ Word (Vtx‘𝐺) → 0 ∈ (0...(#‘𝑥)))
13 eqcom 2617 . . . . . . . . 9 ((𝑥 cyclShift 0) = 𝑥𝑥 = (𝑥 cyclShift 0))
1413biimpi 205 . . . . . . . 8 ((𝑥 cyclShift 0) = 𝑥𝑥 = (𝑥 cyclShift 0))
15 oveq2 6557 . . . . . . . . . 10 (𝑛 = 0 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 0))
1615eqeq2d 2620 . . . . . . . . 9 (𝑛 = 0 → (𝑥 = (𝑥 cyclShift 𝑛) ↔ 𝑥 = (𝑥 cyclShift 0)))
1716rspcev 3282 . . . . . . . 8 ((0 ∈ (0...(#‘𝑥)) ∧ 𝑥 = (𝑥 cyclShift 0)) → ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))
1812, 14, 17syl2an 493 . . . . . . 7 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (𝑥 cyclShift 0) = 𝑥) → ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))
196, 18mpdan 699 . . . . . 6 (𝑥 ∈ Word (Vtx‘𝐺) → ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))
20193ad2ant2 1076 . . . . 5 ((𝐺 ∈ V ∧ 𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅) → ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))
215, 20syl 17 . . . 4 (𝑥 ∈ (ClWWalkS‘𝐺) → ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))
2221pm4.71i 662 . . 3 (𝑥 ∈ (ClWWalkS‘𝐺) ↔ (𝑥 ∈ (ClWWalkS‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))
232, 3, 223bitr4ri 292 . 2 (𝑥 ∈ (ClWWalkS‘𝐺) ↔ (𝑥 ∈ (ClWWalkS‘𝐺) ∧ 𝑥 ∈ (ClWWalkS‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))
24 vex 3176 . . 3 𝑥 ∈ V
25 erclwwlks.r . . . 4 = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalkS‘𝐺) ∧ 𝑤 ∈ (ClWWalkS‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
2625erclwwlkseq 41239 . . 3 ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥 𝑥 ↔ (𝑥 ∈ (ClWWalkS‘𝐺) ∧ 𝑥 ∈ (ClWWalkS‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))))
2724, 24, 26mp2an 704 . 2 (𝑥 𝑥 ↔ (𝑥 ∈ (ClWWalkS‘𝐺) ∧ 𝑥 ∈ (ClWWalkS‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))
2823, 27bitr4i 266 1 (𝑥 ∈ (ClWWalkS‘𝐺) ↔ 𝑥 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  Vcvv 3173  c0 3874   class class class wbr 4583  {copab 4642  cfv 5804  (class class class)co 6549  0cc0 9815  cle 9954  0cn0 11169  ...cfz 12197  #chash 12979  Word cword 13146   cyclShift ccsh 13385  Vtxcvtx 25673  ClWWalkScclwwlks 41183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-hash 12980  df-word 13154  df-concat 13156  df-substr 13158  df-csh 13386  df-clwwlks 41185
This theorem is referenced by:  erclwwlks  41244
  Copyright terms: Public domain W3C validator