Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > erclwwlknrel | Structured version Visualization version GIF version |
Description: ∼ is a relation. (Contributed by Alexander van der Vekens, 25-Mar-2018.) |
Ref | Expression |
---|---|
erclwwlkn.w | ⊢ 𝑊 = ((𝑉 ClWWalksN 𝐸)‘𝑁) |
erclwwlkn.r | ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} |
Ref | Expression |
---|---|
erclwwlknrel | ⊢ Rel ∼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erclwwlkn.r | . 2 ⊢ ∼ = {〈𝑡, 𝑢〉 ∣ (𝑡 ∈ 𝑊 ∧ 𝑢 ∈ 𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))} | |
2 | 1 | relopabi 5167 | 1 ⊢ Rel ∼ |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 {copab 4642 Rel wrel 5043 ‘cfv 5804 (class class class)co 6549 0cc0 9815 ...cfz 12197 cyclShift ccsh 13385 ClWWalksN cclwwlkn 26277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-opab 4644 df-xp 5044 df-rel 5045 |
This theorem is referenced by: erclwwlkn 26356 |
Copyright terms: Public domain | W3C validator |