Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ercl | Structured version Visualization version GIF version |
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
ercl | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersym.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | errel 7638 | . . . 4 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝑅) |
4 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
5 | releldm 5279 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
6 | 3, 4, 5 | syl2anc 691 | . 2 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
7 | erdm 7639 | . . 3 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
8 | 1, 7 | syl 17 | . 2 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
9 | 6, 8 | eleqtrd 2690 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 dom cdm 5038 Rel wrel 5043 Er wer 7626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-xp 5044 df-rel 5045 df-dm 5048 df-er 7629 |
This theorem is referenced by: ercl2 7642 erthi 7680 qliftfun 7719 efgcpbl2 17993 frgpcpbl 17995 prter3 33185 |
Copyright terms: Public domain | W3C validator |