MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercgrg Structured version   Visualization version   GIF version

Theorem ercgrg 25212
Description: The shape congruence relation is an equivalence relation. Statement 4.4 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.)
Hypothesis
Ref Expression
ercgrg.p 𝑃 = (Base‘𝐺)
Assertion
Ref Expression
ercgrg (𝐺 ∈ TarskiG → (cgrG‘𝐺) Er (𝑃pm ℝ))

Proof of Theorem ercgrg
Dummy variables 𝑎 𝑏 𝑔 𝑖 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cgrg 25206 . . . 4 cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
21relmptopab 6781 . . 3 Rel (cgrG‘𝐺)
32a1i 11 . 2 (𝐺 ∈ TarskiG → Rel (cgrG‘𝐺))
4 ercgrg.p . . . . . . 7 𝑃 = (Base‘𝐺)
5 eqid 2610 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
6 eqid 2610 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
74, 5, 6iscgrg 25207 . . . . . 6 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑦 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))))
87biimpa 500 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))))
98simpld 474 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)))
109ancomd 466 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)))
118simprd 478 . . . . . 6 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))
1211simpld 474 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → dom 𝑥 = dom 𝑦)
1312eqcomd 2616 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → dom 𝑦 = dom 𝑥)
14 simpl 472 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → (𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦))
15 simprl 790 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑖 ∈ dom 𝑦)
1612adantr 480 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → dom 𝑥 = dom 𝑦)
1715, 16eleqtrrd 2691 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑖 ∈ dom 𝑥)
18 simprr 792 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑗 ∈ dom 𝑦)
1918, 16eleqtrrd 2691 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑗 ∈ dom 𝑥)
2011simprd 478 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2120r19.21bi 2916 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ 𝑖 ∈ dom 𝑥) → ∀𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2221r19.21bi 2916 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ 𝑖 ∈ dom 𝑥) ∧ 𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2314, 17, 19, 22syl21anc 1317 . . . . . 6 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2423eqcomd 2616 . . . . 5 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
2524ralrimivva 2954 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
2613, 25jca 553 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))
274, 5, 6iscgrg 25207 . . . 4 (𝐺 ∈ TarskiG → (𝑦(cgrG‘𝐺)𝑥 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
2827adantr 480 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑦(cgrG‘𝐺)𝑥 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
2910, 26, 28mpbir2and 959 . 2 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → 𝑦(cgrG‘𝐺)𝑥)
309simpld 474 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → 𝑥 ∈ (𝑃pm ℝ))
3130adantrr 749 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑥 ∈ (𝑃pm ℝ))
324, 5, 6iscgrg 25207 . . . . . . . 8 (𝐺 ∈ TarskiG → (𝑦(cgrG‘𝐺)𝑧 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
3332biimpa 500 . . . . . . 7 ((𝐺 ∈ TarskiG ∧ 𝑦(cgrG‘𝐺)𝑧) → ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))))
3433adantrl 748 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))))
3534simpld 474 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)))
3635simprd 478 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑧 ∈ (𝑃pm ℝ))
3731, 36jca 553 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)))
388adantrr 749 . . . . . . 7 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))))
3938simprd 478 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))
4039simpld 474 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑥 = dom 𝑦)
4134simprd 478 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))
4241simpld 474 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑦 = dom 𝑧)
4340, 42eqtrd 2644 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑥 = dom 𝑧)
4439simprd 478 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4544r19.21bi 2916 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑥) → ∀𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4645r19.21bi 2916 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑥) ∧ 𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4746anasss 677 . . . . . 6 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
48 simpl 472 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → (𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)))
49 simprl 790 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑖 ∈ dom 𝑥)
5040adantr 480 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → dom 𝑥 = dom 𝑦)
5149, 50eleqtrd 2690 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑖 ∈ dom 𝑦)
52 simprr 792 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑗 ∈ dom 𝑥)
5352, 50eleqtrd 2690 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑗 ∈ dom 𝑦)
5441simprd 478 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5554r19.21bi 2916 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑦) → ∀𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5655r19.21bi 2916 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑦) ∧ 𝑗 ∈ dom 𝑦) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5748, 51, 53, 56syl21anc 1317 . . . . . 6 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5847, 57eqtrd 2644 . . . . 5 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5958ralrimivva 2954 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
6043, 59jca 553 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))
614, 5, 6iscgrg 25207 . . . 4 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑧 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
6261adantr 480 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑥(cgrG‘𝐺)𝑧 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
6337, 60, 62mpbir2and 959 . 2 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑥(cgrG‘𝐺)𝑧)
644, 5, 6iscgrg 25207 . . 3 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑥 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
65 pm4.24 673 . . . 4 (𝑥 ∈ (𝑃pm ℝ) ↔ (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)))
66 eqid 2610 . . . . . 6 dom 𝑥 = dom 𝑥
67 eqidd 2611 . . . . . . 7 ((𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
6867rgen2a 2960 . . . . . 6 𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))
6966, 68pm3.2i 470 . . . . 5 (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
7069biantru 525 . . . 4 ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))))
7165, 70bitri 263 . . 3 (𝑥 ∈ (𝑃pm ℝ) ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))))
7264, 71syl6rbbr 278 . 2 (𝐺 ∈ TarskiG → (𝑥 ∈ (𝑃pm ℝ) ↔ 𝑥(cgrG‘𝐺)𝑥))
733, 29, 63, 72iserd 7655 1 (𝐺 ∈ TarskiG → (cgrG‘𝐺) Er (𝑃pm ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173   class class class wbr 4583  dom cdm 5038  Rel wrel 5043  cfv 5804  (class class class)co 6549   Er wer 7626  pm cpm 7745  cr 9814  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  cgrGccgrg 25205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-er 7629  df-cgrg 25206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator