MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivcfil Structured version   Visualization version   GIF version

Theorem equivcfil 22905
Description: If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), all the 𝐷-Cauchy filters are also 𝐶-Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivcau.1 (𝜑𝐶 ∈ (Met‘𝑋))
equivcau.2 (𝜑𝐷 ∈ (Met‘𝑋))
equivcau.3 (𝜑𝑅 ∈ ℝ+)
equivcau.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
equivcfil (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦

Proof of Theorem equivcfil
Dummy variables 𝑓 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . . . . . 8 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
2 equivcau.3 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ+)
32ad2antrr 758 . . . . . . . 8 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑅 ∈ ℝ+)
41, 3rpdivcld 11765 . . . . . . 7 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+)
5 oveq2 6557 . . . . . . . . . 10 (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝐷)𝑠) = (𝑥(ball‘𝐷)(𝑟 / 𝑅)))
65eleq1d 2672 . . . . . . . . 9 (𝑠 = (𝑟 / 𝑅) → ((𝑥(ball‘𝐷)𝑠) ∈ 𝑓 ↔ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
76rexbidv 3034 . . . . . . . 8 (𝑠 = (𝑟 / 𝑅) → (∃𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 ↔ ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
87rspcv 3278 . . . . . . 7 ((𝑟 / 𝑅) ∈ ℝ+ → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
94, 8syl 17 . . . . . 6 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓))
10 simpllr 795 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑓 ∈ (Fil‘𝑋))
11 eqid 2610 . . . . . . . . . . . 12 (MetOpen‘𝐶) = (MetOpen‘𝐶)
12 eqid 2610 . . . . . . . . . . . 12 (MetOpen‘𝐷) = (MetOpen‘𝐷)
13 equivcau.1 . . . . . . . . . . . 12 (𝜑𝐶 ∈ (Met‘𝑋))
14 equivcau.2 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (Met‘𝑋))
15 equivcau.4 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1611, 12, 13, 14, 2, 15metss2lem 22126 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1716ancom2s 840 . . . . . . . . . 10 ((𝜑 ∧ (𝑟 ∈ ℝ+𝑥𝑋)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1817adantlr 747 . . . . . . . . 9 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ (𝑟 ∈ ℝ+𝑥𝑋)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
1918anassrs 678 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
2013ad3antrrr 762 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐶 ∈ (Met‘𝑋))
21 metxmet 21949 . . . . . . . . . 10 (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋))
2220, 21syl 17 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐶 ∈ (∞Met‘𝑋))
23 simpr 476 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑥𝑋)
24 rpxr 11716 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
2524ad2antlr 759 . . . . . . . . 9 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑟 ∈ ℝ*)
26 blssm 22033 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋)
2722, 23, 25, 26syl3anc 1318 . . . . . . . 8 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋)
28 filss 21467 . . . . . . . . . 10 ((𝑓 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))) → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)
29283exp2 1277 . . . . . . . . 9 (𝑓 ∈ (Fil‘𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))))
3029com24 93 . . . . . . . 8 (𝑓 ∈ (Fil‘𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) → ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))))
3110, 19, 27, 30syl3c 64 . . . . . . 7 ((((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3231reximdva 3000 . . . . . 6 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
339, 32syld 46 . . . . 5 (((𝜑𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3433ralrimdva 2952 . . . 4 ((𝜑𝑓 ∈ (Fil‘𝑋)) → (∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))
3534imdistanda 725 . . 3 (𝜑 → ((𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓) → (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
36 metxmet 21949 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
37 iscfil3 22879 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓)))
3814, 36, 373syl 18 . . 3 (𝜑 → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓)))
39 iscfil3 22879 . . . 4 (𝐶 ∈ (∞Met‘𝑋) → (𝑓 ∈ (CauFil‘𝐶) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
4013, 21, 393syl 18 . . 3 (𝜑 → (𝑓 ∈ (CauFil‘𝐶) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))
4135, 38, 403imtr4d 282 . 2 (𝜑 → (𝑓 ∈ (CauFil‘𝐷) → 𝑓 ∈ (CauFil‘𝐶)))
4241ssrdv 3574 1 (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549   · cmul 9820  *cxr 9952  cle 9954   / cdiv 10563  +crp 11708  ∞Metcxmt 19552  Metcme 19553  ballcbl 19554  MetOpencmopn 19557  Filcfil 21459  CauFilccfil 22858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ico 12052  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-fbas 19564  df-fil 21460  df-cfil 22861
This theorem is referenced by:  equivcmet  22922
  Copyright terms: Public domain W3C validator