MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsupd Structured version   Visualization version   GIF version

Theorem eqsupd 8246
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.)
Hypotheses
Ref Expression
supmo.1 (𝜑𝑅 Or 𝐴)
eqsupd.2 (𝜑𝐶𝐴)
eqsupd.3 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
eqsupd.4 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑧𝐵 𝑦𝑅𝑧)
Assertion
Ref Expression
eqsupd (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝑅,𝑧   𝑦,𝐵,𝑧   𝑦,𝐶   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐶(𝑧)

Proof of Theorem eqsupd
StepHypRef Expression
1 eqsupd.2 . 2 (𝜑𝐶𝐴)
2 eqsupd.3 . . 3 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
32ralrimiva 2949 . 2 (𝜑 → ∀𝑦𝐵 ¬ 𝐶𝑅𝑦)
4 eqsupd.4 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑧𝐵 𝑦𝑅𝑧)
54expr 641 . . 3 ((𝜑𝑦𝐴) → (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))
65ralrimiva 2949 . 2 (𝜑 → ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))
7 supmo.1 . . 3 (𝜑𝑅 Or 𝐴)
87eqsup 8245 . 2 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶))
91, 3, 6, 8mp3and 1419 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583   Or wor 4958  supcsup 8229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-po 4959  df-so 4960  df-iota 5768  df-riota 6511  df-sup 8231
This theorem is referenced by:  supmax  8256  supiso  8264  dfgcd2  15101  esumpcvgval  29467  esum2d  29482  mblfinlem3  32618  mblfinlem4  32619  ismblfin  32620  itg2addnclem  32631  radcnvrat  37535
  Copyright terms: Public domain W3C validator