Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsqrtd | Structured version Visualization version GIF version |
Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.) |
Ref | Expression |
---|---|
eqsqrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
eqsqrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
eqsqrd.3 | ⊢ (𝜑 → (𝐴↑2) = 𝐵) |
eqsqrd.4 | ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) |
eqsqrd.5 | ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) |
Ref | Expression |
---|---|
eqsqrtd | ⊢ (𝜑 → 𝐴 = (√‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsqrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
2 | sqreu 13948 | . . 3 ⊢ (𝐵 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | |
3 | reurmo 3138 | . . 3 ⊢ (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) |
5 | eqsqrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
6 | eqsqrd.3 | . . 3 ⊢ (𝜑 → (𝐴↑2) = 𝐵) | |
7 | eqsqrd.4 | . . 3 ⊢ (𝜑 → 0 ≤ (ℜ‘𝐴)) | |
8 | eqsqrd.5 | . . . 4 ⊢ (𝜑 → ¬ (i · 𝐴) ∈ ℝ+) | |
9 | df-nel 2783 | . . . 4 ⊢ ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+) | |
10 | 8, 9 | sylibr 223 | . . 3 ⊢ (𝜑 → (i · 𝐴) ∉ ℝ+) |
11 | 6, 7, 10 | 3jca 1235 | . 2 ⊢ (𝜑 → ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) |
12 | sqrtcl 13949 | . . 3 ⊢ (𝐵 ∈ ℂ → (√‘𝐵) ∈ ℂ) | |
13 | 1, 12 | syl 17 | . 2 ⊢ (𝜑 → (√‘𝐵) ∈ ℂ) |
14 | sqrtthlem 13950 | . . 3 ⊢ (𝐵 ∈ ℂ → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)) | |
15 | 1, 14 | syl 17 | . 2 ⊢ (𝜑 → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)) |
16 | oveq1 6556 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2)) | |
17 | 16 | eqeq1d 2612 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥↑2) = 𝐵 ↔ (𝐴↑2) = 𝐵)) |
18 | fveq2 6103 | . . . . 5 ⊢ (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴)) | |
19 | 18 | breq2d 4595 | . . . 4 ⊢ (𝑥 = 𝐴 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝐴))) |
20 | oveq2 6557 | . . . . 5 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
21 | neleq1 2888 | . . . . 5 ⊢ ((i · 𝑥) = (i · 𝐴) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+)) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝑥 = 𝐴 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+)) |
23 | 17, 19, 22 | 3anbi123d 1391 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+))) |
24 | oveq1 6556 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (𝑥↑2) = ((√‘𝐵)↑2)) | |
25 | 24 | eqeq1d 2612 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → ((𝑥↑2) = 𝐵 ↔ ((√‘𝐵)↑2) = 𝐵)) |
26 | fveq2 6103 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (ℜ‘𝑥) = (ℜ‘(√‘𝐵))) | |
27 | 26 | breq2d 4595 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(√‘𝐵)))) |
28 | oveq2 6557 | . . . . 5 ⊢ (𝑥 = (√‘𝐵) → (i · 𝑥) = (i · (√‘𝐵))) | |
29 | neleq1 2888 | . . . . 5 ⊢ ((i · 𝑥) = (i · (√‘𝐵)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+)) | |
30 | 28, 29 | syl 17 | . . . 4 ⊢ (𝑥 = (√‘𝐵) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+)) |
31 | 25, 27, 30 | 3anbi123d 1391 | . . 3 ⊢ (𝑥 = (√‘𝐵) → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) |
32 | 23, 31 | rmoi 3496 | . 2 ⊢ ((∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ (𝐴 ∈ ℂ ∧ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) ∧ ((√‘𝐵) ∈ ℂ ∧ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) → 𝐴 = (√‘𝐵)) |
33 | 4, 5, 11, 13, 15, 32 | syl122anc 1327 | 1 ⊢ (𝜑 → 𝐴 = (√‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∉ wnel 2781 ∃!wreu 2898 ∃*wrmo 2899 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 0cc0 9815 ici 9817 · cmul 9820 ≤ cle 9954 2c2 10947 ℝ+crp 11708 ↑cexp 12722 ℜcre 13685 √csqrt 13821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 |
This theorem is referenced by: eqsqrt2d 13956 cphsqrtcl2 22794 |
Copyright terms: Public domain | W3C validator |