Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrd Structured version   Visualization version   GIF version

Theorem eqrd 3586
 Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.)
Hypotheses
Ref Expression
eqrd.0 𝑥𝜑
eqrd.1 𝑥𝐴
eqrd.2 𝑥𝐵
eqrd.3 (𝜑 → (𝑥𝐴𝑥𝐵))
Assertion
Ref Expression
eqrd (𝜑𝐴 = 𝐵)

Proof of Theorem eqrd
StepHypRef Expression
1 eqrd.0 . . 3 𝑥𝜑
2 eqrd.1 . . 3 𝑥𝐴
3 eqrd.2 . . 3 𝑥𝐵
4 eqrd.3 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐵))
54biimpd 218 . . 3 (𝜑 → (𝑥𝐴𝑥𝐵))
61, 2, 3, 5ssrd 3573 . 2 (𝜑𝐴𝐵)
74biimprd 237 . . 3 (𝜑 → (𝑥𝐵𝑥𝐴))
81, 3, 2, 7ssrd 3573 . 2 (𝜑𝐵𝐴)
96, 8eqssd 3585 1 (𝜑𝐴 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977  Ⅎwnfc 2738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-in 3547  df-ss 3554 This theorem is referenced by:  sniota  5795  dissnlocfin  21142  imasnopn  21303  imasncld  21304  imasncls  21305  blval2  22177  eqri  28735  fimarab  28825  ofpreima  28848  ordtconlem1  29298  qqhval2  29354  bj-sspwpwab  32239  bj-xnex  32245  topdifinfindis  32370  icorempt2  32375  isbasisrelowllem1  32379  isbasisrelowllem2  32380  areaquad  36821  rfcnpre1  38201  rfcnpre2  38213
 Copyright terms: Public domain W3C validator