MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqoreldifOLD Structured version   Visualization version   GIF version

Theorem eqoreldifOLD 4173
Description: Obsolete proof of eqoreldif 4172 as of 23-Jul-2021. (Contributed by AV, 25-Aug-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
eqoreldifOLD (𝐵𝐶 → (𝐴𝐶 ↔ (𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵}))))

Proof of Theorem eqoreldifOLD
StepHypRef Expression
1 orc 399 . . . . 5 (𝐴 = 𝐵 → (𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵})))
21a1d 25 . . . 4 (𝐴 = 𝐵 → ((𝐵𝐶𝐴𝐶) → (𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵}))))
3 simprr 792 . . . . . . 7 ((¬ 𝐴 = 𝐵 ∧ (𝐵𝐶𝐴𝐶)) → 𝐴𝐶)
4 elsni 4142 . . . . . . . . . 10 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
54a1i 11 . . . . . . . . 9 ((𝐵𝐶𝐴𝐶) → (𝐴 ∈ {𝐵} → 𝐴 = 𝐵))
65con3d 147 . . . . . . . 8 ((𝐵𝐶𝐴𝐶) → (¬ 𝐴 = 𝐵 → ¬ 𝐴 ∈ {𝐵}))
76impcom 445 . . . . . . 7 ((¬ 𝐴 = 𝐵 ∧ (𝐵𝐶𝐴𝐶)) → ¬ 𝐴 ∈ {𝐵})
83, 7eldifd 3551 . . . . . 6 ((¬ 𝐴 = 𝐵 ∧ (𝐵𝐶𝐴𝐶)) → 𝐴 ∈ (𝐶 ∖ {𝐵}))
98olcd 407 . . . . 5 ((¬ 𝐴 = 𝐵 ∧ (𝐵𝐶𝐴𝐶)) → (𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵})))
109ex 449 . . . 4 𝐴 = 𝐵 → ((𝐵𝐶𝐴𝐶) → (𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵}))))
112, 10pm2.61i 175 . . 3 ((𝐵𝐶𝐴𝐶) → (𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵})))
1211ex 449 . 2 (𝐵𝐶 → (𝐴𝐶 → (𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵}))))
13 eleq1 2676 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
1413biimprd 237 . . . 4 (𝐴 = 𝐵 → (𝐵𝐶𝐴𝐶))
15 eldifi 3694 . . . . 5 (𝐴 ∈ (𝐶 ∖ {𝐵}) → 𝐴𝐶)
1615a1d 25 . . . 4 (𝐴 ∈ (𝐶 ∖ {𝐵}) → (𝐵𝐶𝐴𝐶))
1714, 16jaoi 393 . . 3 ((𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵})) → (𝐵𝐶𝐴𝐶))
1817com12 32 . 2 (𝐵𝐶 → ((𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵})) → 𝐴𝐶))
1912, 18impbid 201 1 (𝐵𝐶 → (𝐴𝐶 ↔ (𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  cdif 3537  {csn 4125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-sn 4126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator