Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  entr3i Structured version   Visualization version   GIF version

Theorem entr3i 7898
 Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
Hypotheses
Ref Expression
entr3i.1 𝐴𝐵
entr3i.2 𝐴𝐶
Assertion
Ref Expression
entr3i 𝐵𝐶

Proof of Theorem entr3i
StepHypRef Expression
1 entr3i.1 . . 3 𝐴𝐵
21ensymi 7892 . 2 𝐵𝐴
3 entr3i.2 . 2 𝐴𝐶
42, 3entri 7896 1 𝐵𝐶
 Colors of variables: wff setvar class Syntax hints:   class class class wbr 4583   ≈ cen 7838 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-er 7629  df-en 7842 This theorem is referenced by:  cpnnen  14797
 Copyright terms: Public domain W3C validator