MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensymb Structured version   Visualization version   GIF version

Theorem ensymb 7890
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
ensymb (𝐴𝐵𝐵𝐴)

Proof of Theorem ensymb
StepHypRef Expression
1 ener 7888 . . . 4 ≈ Er V
21a1i 11 . . 3 (⊤ → ≈ Er V)
32ersymb 7643 . 2 (⊤ → (𝐴𝐵𝐵𝐴))
43trud 1484 1 (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wtru 1476  Vcvv 3173   class class class wbr 4583   Er wer 7626  cen 7838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-er 7629  df-en 7842
This theorem is referenced by:  ensym  7891  0sdomg  7974  snnen2o  8034  cantnfp1lem2  8459  cantnflem1  8469  iscard2  8685  dffin1-5  9093  pmtrsn  17762  volmeas  29621  isnumbasgrplem1  36690  rp-isfinite6  36883
  Copyright terms: Public domain W3C validator