Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensymb | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ensymb | ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ener 7888 | . . . 4 ⊢ ≈ Er V | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → ≈ Er V) |
3 | 2 | ersymb 7643 | . 2 ⊢ (⊤ → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) |
4 | 3 | trud 1484 | 1 ⊢ (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ⊤wtru 1476 Vcvv 3173 class class class wbr 4583 Er wer 7626 ≈ cen 7838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-er 7629 df-en 7842 |
This theorem is referenced by: ensym 7891 0sdomg 7974 snnen2o 8034 cantnfp1lem2 8459 cantnflem1 8469 iscard2 8685 dffin1-5 9093 pmtrsn 17762 volmeas 29621 isnumbasgrplem1 36690 rp-isfinite6 36883 |
Copyright terms: Public domain | W3C validator |