Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  engch Structured version   Visualization version   GIF version

Theorem engch 9329
 Description: The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
engch (𝐴𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH))

Proof of Theorem engch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enfi 8061 . . 3 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
2 sdomen1 7989 . . . . . 6 (𝐴𝐵 → (𝐴𝑥𝐵𝑥))
3 pwen 8018 . . . . . . 7 (𝐴𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵)
4 sdomen2 7990 . . . . . . 7 (𝒫 𝐴 ≈ 𝒫 𝐵 → (𝑥 ≺ 𝒫 𝐴𝑥 ≺ 𝒫 𝐵))
53, 4syl 17 . . . . . 6 (𝐴𝐵 → (𝑥 ≺ 𝒫 𝐴𝑥 ≺ 𝒫 𝐵))
62, 5anbi12d 743 . . . . 5 (𝐴𝐵 → ((𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
76notbid 307 . . . 4 (𝐴𝐵 → (¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
87albidv 1836 . . 3 (𝐴𝐵 → (∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
91, 8orbi12d 742 . 2 (𝐴𝐵 → ((𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)) ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
10 relen 7846 . . . 4 Rel ≈
1110brrelexi 5082 . . 3 (𝐴𝐵𝐴 ∈ V)
12 elgch 9323 . . 3 (𝐴 ∈ V → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
1311, 12syl 17 . 2 (𝐴𝐵 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
1410brrelex2i 5083 . . 3 (𝐴𝐵𝐵 ∈ V)
15 elgch 9323 . . 3 (𝐵 ∈ V → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
1614, 15syl 17 . 2 (𝐴𝐵 → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
179, 13, 163bitr4d 299 1 (𝐴𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383  ∀wal 1473   ∈ wcel 1977  Vcvv 3173  𝒫 cpw 4108   class class class wbr 4583   ≈ cen 7838   ≺ csdm 7840  Fincfn 7841  GCHcgch 9321 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-1o 7447  df-2o 7448  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-gch 9322 This theorem is referenced by:  gch2  9376
 Copyright terms: Public domain W3C validator