Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en3lpVD Structured version   Visualization version   GIF version

Theorem en3lpVD 38102
Description: Virtual deduction proof of en3lp 8396. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en3lpVD ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)

Proof of Theorem en3lpVD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2.1 432 . . 3 (¬ {𝐴, 𝐵, 𝐶} = ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅)
2 df-ne 2782 . . . . 5 ({𝐴, 𝐵, 𝐶} ≠ ∅ ↔ ¬ {𝐴, 𝐵, 𝐶} = ∅)
32bicomi 213 . . . 4 (¬ {𝐴, 𝐵, 𝐶} = ∅ ↔ {𝐴, 𝐵, 𝐶} ≠ ∅)
43orbi1i 541 . . 3 ((¬ {𝐴, 𝐵, 𝐶} = ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅) ↔ ({𝐴, 𝐵, 𝐶} ≠ ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅))
51, 4mpbi 219 . 2 ({𝐴, 𝐵, 𝐶} ≠ ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅)
6 zfregs2 8492 . . . 4 ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥))
7 en3lplem2VD 38101 . . . . . . 7 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
87alrimiv 1842 . . . . . 6 ((𝐴𝐵𝐵𝐶𝐶𝐴) → ∀𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
9 df-ral 2901 . . . . . 6 (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥) ↔ ∀𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
108, 9sylibr 223 . . . . 5 ((𝐴𝐵𝐵𝐶𝐶𝐴) → ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥))
1110con3i 149 . . . 4 (¬ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥) → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
126, 11syl 17 . . 3 ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
13 idn1 37811 . . . . . . 7 (   {𝐴, 𝐵, 𝐶} = ∅   ▶   {𝐴, 𝐵, 𝐶} = ∅   )
14 noel 3878 . . . . . . 7 ¬ 𝐶 ∈ ∅
15 eleq2 2677 . . . . . . . . 9 ({𝐴, 𝐵, 𝐶} = ∅ → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ ∅))
1615notbid 307 . . . . . . . 8 ({𝐴, 𝐵, 𝐶} = ∅ → (¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ ¬ 𝐶 ∈ ∅))
1716biimprd 237 . . . . . . 7 ({𝐴, 𝐵, 𝐶} = ∅ → (¬ 𝐶 ∈ ∅ → ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
1813, 14, 17e10 37940 . . . . . 6 (   {𝐴, 𝐵, 𝐶} = ∅   ▶    ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶}   )
19 tpid3g 4248 . . . . . . 7 (𝐶𝐴𝐶 ∈ {𝐴, 𝐵, 𝐶})
2019con3i 149 . . . . . 6 𝐶 ∈ {𝐴, 𝐵, 𝐶} → ¬ 𝐶𝐴)
2118, 20e1a 37873 . . . . 5 (   {𝐴, 𝐵, 𝐶} = ∅   ▶    ¬ 𝐶𝐴   )
22 simp3 1056 . . . . . 6 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶𝐴)
2322con3i 149 . . . . 5 𝐶𝐴 → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
2421, 23e1a 37873 . . . 4 (   {𝐴, 𝐵, 𝐶} = ∅   ▶    ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)   )
2524in1 37808 . . 3 ({𝐴, 𝐵, 𝐶} = ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
2612, 25jaoi 393 . 2 (({𝐴, 𝐵, 𝐶} ≠ ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅) → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
275, 26ax-mp 5 1 ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1031  wal 1473   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  c0 3874  {ctp 4129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-vd1 37807  df-vd2 37815  df-vd3 37827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator