MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3lp Structured version   Visualization version   GIF version

Theorem en3lp 8396
Description: No class has 3-cycle membership loops. This proof was automatically generated from the virtual deduction proof en3lpVD 38102 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
en3lp ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)

Proof of Theorem en3lp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 noel 3878 . . . . 5 ¬ 𝐶 ∈ ∅
2 eleq2 2677 . . . . 5 ({𝐴, 𝐵, 𝐶} = ∅ → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ ∅))
31, 2mtbiri 316 . . . 4 ({𝐴, 𝐵, 𝐶} = ∅ → ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶})
4 tpid3g 4248 . . . 4 (𝐶𝐴𝐶 ∈ {𝐴, 𝐵, 𝐶})
53, 4nsyl 134 . . 3 ({𝐴, 𝐵, 𝐶} = ∅ → ¬ 𝐶𝐴)
65intn3an3d 1436 . 2 ({𝐴, 𝐵, 𝐶} = ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
7 tpex 6855 . . . 4 {𝐴, 𝐵, 𝐶} ∈ V
8 zfreg 8383 . . . 4 (({𝐴, 𝐵, 𝐶} ∈ V ∧ {𝐴, 𝐵, 𝐶} ≠ ∅) → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅)
97, 8mpan 702 . . 3 ({𝐴, 𝐵, 𝐶} ≠ ∅ → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅)
10 en3lplem2 8395 . . . . . 6 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
1110com12 32 . . . . 5 (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
1211necon2bd 2798 . . . 4 (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)))
1312rexlimiv 3009 . . 3 (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
149, 13syl 17 . 2 ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
156, 14pm2.61ine 2865 1 ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wrex 2897  Vcvv 3173  cin 3539  c0 3874  {ctp 4129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847  ax-reg 8380
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-nul 3875  df-sn 4126  df-pr 4128  df-tp 4130  df-uni 4373
This theorem is referenced by:  bj-inftyexpidisj  32274  tratrb  37767  tratrbVD  38119
  Copyright terms: Public domain W3C validator