MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2top Structured version   Visualization version   GIF version

Theorem en2top 20600
Description: If a topology has two elements, it is the indiscrete topology. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
en2top (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2𝑜 ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))

Proof of Theorem en2top
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → 𝐽 ≈ 2𝑜)
2 toponss 20544 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
32ad2ant2rl 781 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥𝑋)
4 simprl 790 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑋 = ∅)
5 sseq0 3927 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑋 = ∅) → 𝑥 = ∅)
63, 4, 5syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥 = ∅)
7 velsn 4141 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
86, 7sylibr 223 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ (𝑋 = ∅ ∧ 𝑥𝐽)) → 𝑥 ∈ {∅})
98expr 641 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → (𝑥𝐽𝑥 ∈ {∅}))
109ssrdv 3574 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → 𝐽 ⊆ {∅})
11 topontop 20541 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
12 0opn 20534 . . . . . . . . . . . . . . . 16 (𝐽 ∈ Top → ∅ ∈ 𝐽)
1311, 12syl 17 . . . . . . . . . . . . . . 15 (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽)
1413ad2antrr 758 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → ∅ ∈ 𝐽)
1514snssd 4281 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → {∅} ⊆ 𝐽)
1610, 15eqssd 3585 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → 𝐽 = {∅})
17 0ex 4718 . . . . . . . . . . . . 13 ∅ ∈ V
1817ensn1 7906 . . . . . . . . . . . 12 {∅} ≈ 1𝑜
1916, 18syl6eqbr 4622 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → 𝐽 ≈ 1𝑜)
2019olcd 407 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → (𝐽 = ∅ ∨ 𝐽 ≈ 1𝑜))
21 sdom2en01 9007 . . . . . . . . . 10 (𝐽 ≺ 2𝑜 ↔ (𝐽 = ∅ ∨ 𝐽 ≈ 1𝑜))
2220, 21sylibr 223 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → 𝐽 ≺ 2𝑜)
23 sdomnen 7870 . . . . . . . . 9 (𝐽 ≺ 2𝑜 → ¬ 𝐽 ≈ 2𝑜)
2422, 23syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → ¬ 𝐽 ≈ 2𝑜)
2524ex 449 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → (𝑋 = ∅ → ¬ 𝐽 ≈ 2𝑜))
2625necon2ad 2797 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → (𝐽 ≈ 2𝑜𝑋 ≠ ∅))
271, 26mpd 15 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → 𝑋 ≠ ∅)
2827necomd 2837 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → ∅ ≠ 𝑋)
2913adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → ∅ ∈ 𝐽)
30 toponmax 20543 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
3130adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → 𝑋𝐽)
32 en2eqpr 8713 . . . . 5 ((𝐽 ≈ 2𝑜 ∧ ∅ ∈ 𝐽𝑋𝐽) → (∅ ≠ 𝑋𝐽 = {∅, 𝑋}))
331, 29, 31, 32syl3anc 1318 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → (∅ ≠ 𝑋𝐽 = {∅, 𝑋}))
3428, 33mpd 15 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → 𝐽 = {∅, 𝑋})
3534, 27jca 553 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))
36 simprl 790 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝐽 = {∅, 𝑋})
3717a1i 11 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → ∅ ∈ V)
3830adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝑋𝐽)
39 simprr 792 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝑋 ≠ ∅)
4039necomd 2837 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → ∅ ≠ 𝑋)
41 pr2nelem 8710 . . . 4 ((∅ ∈ V ∧ 𝑋𝐽 ∧ ∅ ≠ 𝑋) → {∅, 𝑋} ≈ 2𝑜)
4237, 38, 40, 41syl3anc 1318 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → {∅, 𝑋} ≈ 2𝑜)
4336, 42eqbrtrd 4605 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝐽 ≈ 2𝑜)
4435, 43impbida 873 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2𝑜 ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  wss 3540  c0 3874  {csn 4125  {cpr 4127   class class class wbr 4583  cfv 5804  1𝑜c1o 7440  2𝑜c2o 7441  cen 7838  csdm 7840  Topctop 20517  TopOnctopon 20518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-2o 7448  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-top 20521  df-topon 20523
This theorem is referenced by:  hmphindis  21410
  Copyright terms: Public domain W3C validator