Step | Hyp | Ref
| Expression |
1 | | simpr 476 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → 𝐽 ≈
2𝑜) |
2 | | toponss 20544 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) |
3 | 2 | ad2ant2rl 781 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ (𝑋 = ∅ ∧ 𝑥 ∈ 𝐽)) → 𝑥 ⊆ 𝑋) |
4 | | simprl 790 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ (𝑋 = ∅ ∧ 𝑥 ∈ 𝐽)) → 𝑋 = ∅) |
5 | | sseq0 3927 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ⊆ 𝑋 ∧ 𝑋 = ∅) → 𝑥 = ∅) |
6 | 3, 4, 5 | syl2anc 691 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ (𝑋 = ∅ ∧ 𝑥 ∈ 𝐽)) → 𝑥 = ∅) |
7 | | velsn 4141 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) |
8 | 6, 7 | sylibr 223 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ (𝑋 = ∅ ∧ 𝑥 ∈ 𝐽)) → 𝑥 ∈ {∅}) |
9 | 8 | expr 641 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → (𝑥 ∈ 𝐽 → 𝑥 ∈ {∅})) |
10 | 9 | ssrdv 3574 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → 𝐽 ⊆
{∅}) |
11 | | topontop 20541 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
12 | | 0opn 20534 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ Top → ∅
∈ 𝐽) |
13 | 11, 12 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ∈ (TopOn‘𝑋) → ∅ ∈ 𝐽) |
14 | 13 | ad2antrr 758 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → ∅
∈ 𝐽) |
15 | 14 | snssd 4281 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → {∅}
⊆ 𝐽) |
16 | 10, 15 | eqssd 3585 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → 𝐽 = {∅}) |
17 | | 0ex 4718 |
. . . . . . . . . . . . 13
⊢ ∅
∈ V |
18 | 17 | ensn1 7906 |
. . . . . . . . . . . 12
⊢ {∅}
≈ 1𝑜 |
19 | 16, 18 | syl6eqbr 4622 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → 𝐽 ≈
1𝑜) |
20 | 19 | olcd 407 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → (𝐽 = ∅ ∨ 𝐽 ≈
1𝑜)) |
21 | | sdom2en01 9007 |
. . . . . . . . . 10
⊢ (𝐽 ≺ 2𝑜
↔ (𝐽 = ∅ ∨
𝐽 ≈
1𝑜)) |
22 | 20, 21 | sylibr 223 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → 𝐽 ≺
2𝑜) |
23 | | sdomnen 7870 |
. . . . . . . . 9
⊢ (𝐽 ≺ 2𝑜
→ ¬ 𝐽 ≈
2𝑜) |
24 | 22, 23 | syl 17 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) ∧ 𝑋 = ∅) → ¬ 𝐽 ≈
2𝑜) |
25 | 24 | ex 449 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) →
(𝑋 = ∅ → ¬
𝐽 ≈
2𝑜)) |
26 | 25 | necon2ad 2797 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) →
(𝐽 ≈
2𝑜 → 𝑋 ≠ ∅)) |
27 | 1, 26 | mpd 15 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → 𝑋 ≠ ∅) |
28 | 27 | necomd 2837 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) →
∅ ≠ 𝑋) |
29 | 13 | adantr 480 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) →
∅ ∈ 𝐽) |
30 | | toponmax 20543 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
31 | 30 | adantr 480 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → 𝑋 ∈ 𝐽) |
32 | | en2eqpr 8713 |
. . . . 5
⊢ ((𝐽 ≈ 2𝑜
∧ ∅ ∈ 𝐽
∧ 𝑋 ∈ 𝐽) → (∅ ≠ 𝑋 → 𝐽 = {∅, 𝑋})) |
33 | 1, 29, 31, 32 | syl3anc 1318 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) →
(∅ ≠ 𝑋 →
𝐽 = {∅, 𝑋})) |
34 | 28, 33 | mpd 15 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) → 𝐽 = {∅, 𝑋}) |
35 | 34, 27 | jca 553 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ≈ 2𝑜) →
(𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) |
36 | | simprl 790 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝐽 = {∅, 𝑋}) |
37 | 17 | a1i 11 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → ∅ ∈
V) |
38 | 30 | adantr 480 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝑋 ∈ 𝐽) |
39 | | simprr 792 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝑋 ≠ ∅) |
40 | 39 | necomd 2837 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → ∅ ≠ 𝑋) |
41 | | pr2nelem 8710 |
. . . 4
⊢ ((∅
∈ V ∧ 𝑋 ∈
𝐽 ∧ ∅ ≠ 𝑋) → {∅, 𝑋} ≈
2𝑜) |
42 | 37, 38, 40, 41 | syl3anc 1318 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → {∅, 𝑋} ≈
2𝑜) |
43 | 36, 42 | eqbrtrd 4605 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅)) → 𝐽 ≈
2𝑜) |
44 | 35, 43 | impbida 873 |
1
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ≈ 2𝑜 ↔ (𝐽 = {∅, 𝑋} ∧ 𝑋 ≠ ∅))) |