MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1b Structured version   Visualization version   GIF version

Theorem en1b 7910
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
en1b (𝐴 ≈ 1𝑜𝐴 = { 𝐴})

Proof of Theorem en1b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 7909 . . 3 (𝐴 ≈ 1𝑜 ↔ ∃𝑥 𝐴 = {𝑥})
2 id 22 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 4380 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 vex 3176 . . . . . . . 8 𝑥 ∈ V
54unisn 4387 . . . . . . 7 {𝑥} = 𝑥
63, 5syl6eq 2660 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
76sneqd 4137 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
82, 7eqtr4d 2647 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
98exlimiv 1845 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
101, 9sylbi 206 . 2 (𝐴 ≈ 1𝑜𝐴 = { 𝐴})
11 id 22 . . 3 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
12 snex 4835 . . . . . 6 { 𝐴} ∈ V
1311, 12syl6eqel 2696 . . . . 5 (𝐴 = { 𝐴} → 𝐴 ∈ V)
14 uniexg 6853 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ V)
1513, 14syl 17 . . . 4 (𝐴 = { 𝐴} → 𝐴 ∈ V)
16 ensn1g 7907 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1𝑜)
1715, 16syl 17 . . 3 (𝐴 = { 𝐴} → { 𝐴} ≈ 1𝑜)
1811, 17eqbrtrd 4605 . 2 (𝐴 = { 𝐴} → 𝐴 ≈ 1𝑜)
1910, 18impbii 198 1 (𝐴 ≈ 1𝑜𝐴 = { 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  {csn 4125   cuni 4372   class class class wbr 4583  1𝑜c1o 7440  cen 7838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1o 7447  df-en 7842
This theorem is referenced by:  en1uniel  7914  sylow2alem2  17856  sylow2a  17857  frgpcyg  19741  ptcmplem3  21668  cnextfvval  21679  cnextcn  21681  minveclem4a  23009  isppw  24640  xrge0tsmsbi  29117
  Copyright terms: Public domain W3C validator