Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eluzrabdioph | Structured version Visualization version GIF version |
Description: Diophantine set builder for membership in a fixed upper set of integers. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
Ref | Expression |
---|---|
eluzrabdioph | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ∈ (ℤ≥‘𝑀)} ∈ (Dioph‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabdiophlem1 36383 | . . . . 5 ⊢ ((𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁)) → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ) | |
2 | eluz 11577 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝐴)) | |
3 | 2 | ex 449 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝐴 ∈ ℤ → (𝐴 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝐴))) |
4 | 3 | ralimdv 2946 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))(𝐴 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝐴))) |
5 | 4 | imp 444 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))𝐴 ∈ ℤ) → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))(𝐴 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝐴)) |
6 | 1, 5 | sylan2 490 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → ∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))(𝐴 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝐴)) |
7 | rabbi 3097 | . . . 4 ⊢ (∀𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁))(𝐴 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝐴) ↔ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ∈ (ℤ≥‘𝑀)} = {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝑀 ≤ 𝐴}) | |
8 | 6, 7 | sylib 207 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ∈ (ℤ≥‘𝑀)} = {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝑀 ≤ 𝐴}) |
9 | 8 | 3adant1 1072 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ∈ (ℤ≥‘𝑀)} = {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝑀 ≤ 𝐴}) |
10 | ovex 6577 | . . . 4 ⊢ (1...𝑁) ∈ V | |
11 | mzpconstmpt 36321 | . . . 4 ⊢ (((1...𝑁) ∈ V ∧ 𝑀 ∈ ℤ) → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑀) ∈ (mzPoly‘(1...𝑁))) | |
12 | 10, 11 | mpan 702 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑀) ∈ (mzPoly‘(1...𝑁))) |
13 | lerabdioph 36387 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝑀) ∈ (mzPoly‘(1...𝑁)) ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝑀 ≤ 𝐴} ∈ (Dioph‘𝑁)) | |
14 | 12, 13 | syl3an2 1352 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝑀 ≤ 𝐴} ∈ (Dioph‘𝑁)) |
15 | 9, 14 | eqeltrd 2688 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ 𝐴 ∈ (ℤ≥‘𝑀)} ∈ (Dioph‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {crab 2900 Vcvv 3173 class class class wbr 4583 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 1c1 9816 ≤ cle 9954 ℕ0cn0 11169 ℤcz 11254 ℤ≥cuz 11563 ...cfz 12197 mzPolycmzp 36303 Diophcdioph 36336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-hash 12980 df-mzpcl 36304 df-mzp 36305 df-dioph 36337 |
This theorem is referenced by: elnnrabdioph 36389 rmydioph 36599 expdiophlem2 36607 |
Copyright terms: Public domain | W3C validator |