MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz1 Structured version   Visualization version   GIF version

Theorem eluz1 11567
Description: Membership in the upper set of integers starting at 𝑀. (Contributed by NM, 5-Sep-2005.)
Assertion
Ref Expression
eluz1 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))

Proof of Theorem eluz1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uzval 11565 . . 3 (𝑀 ∈ ℤ → (ℤ𝑀) = {𝑘 ∈ ℤ ∣ 𝑀𝑘})
21eleq2d 2673 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀𝑘}))
3 breq2 4587 . . 3 (𝑘 = 𝑁 → (𝑀𝑘𝑀𝑁))
43elrab 3331 . 2 (𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀𝑘} ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁))
52, 4syl6bb 275 1 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wcel 1977  {crab 2900   class class class wbr 4583  cfv 5804  cle 9954  cz 11254  cuz 11563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-neg 10148  df-z 11255  df-uz 11564
This theorem is referenced by:  eluz2  11569  eluz1i  11571  eluz  11577  uzid  11578  uzss  11584  eluzp1m1  11587  raluz  11612  rexuz  11614  preduz  12330  fi1uzind  13134  fi1uzindOLD  13140  algcvga  15130  nndiffz1  28936  fzspl  28938  lzunuz  36349
  Copyright terms: Public domain W3C validator