Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elutop | Structured version Visualization version GIF version |
Description: Open sets in the topology induced by an uniform structure 𝑈 on 𝑋 (Contributed by Thierry Arnoux, 30-Nov-2017.) |
Ref | Expression |
---|---|
elutop | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | utopval 21846 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎}) | |
2 | 1 | eleq2d 2673 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ 𝐴 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎})) |
3 | sseq2 3590 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((𝑣 “ {𝑥}) ⊆ 𝑎 ↔ (𝑣 “ {𝑥}) ⊆ 𝐴)) | |
4 | 3 | rexbidv 3034 | . . . . 5 ⊢ (𝑎 = 𝐴 → (∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)) |
5 | 4 | raleqbi1dv 3123 | . . . 4 ⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)) |
6 | 5 | elrab 3331 | . . 3 ⊢ (𝐴 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝑎} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴)) |
7 | 2, 6 | syl6bb 275 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
8 | elex 3185 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 𝑋 → 𝐴 ∈ V) | |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋 → 𝐴 ∈ V)) |
10 | elfvex 6131 | . . . . . . 7 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ V) |
12 | simpr 476 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
13 | 11, 12 | ssexd 4733 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
14 | 13 | ex 449 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ⊆ 𝑋 → 𝐴 ∈ V)) |
15 | elpwg 4116 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋))) |
17 | 9, 14, 16 | pm5.21ndd 368 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
18 | 17 | anbi1d 737 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
19 | 7, 18 | bitrd 267 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝐴 ∈ (unifTop‘𝑈) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ 𝑈 (𝑣 “ {𝑥}) ⊆ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 {crab 2900 Vcvv 3173 ⊆ wss 3540 𝒫 cpw 4108 {csn 4125 “ cima 5041 ‘cfv 5804 UnifOncust 21813 unifTopcutop 21844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-iota 5768 df-fun 5806 df-fn 5807 df-fv 5812 df-ust 21814 df-utop 21845 |
This theorem is referenced by: utoptop 21848 utopbas 21849 restutop 21851 restutopopn 21852 ucncn 21899 |
Copyright terms: Public domain | W3C validator |