Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elunirab | Structured version Visualization version GIF version |
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
elunirab | ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluniab 4383 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
2 | df-rab 2905 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
3 | 2 | unieqi 4381 | . . 3 ⊢ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} = ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
4 | 3 | eleq2i 2680 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
5 | df-rex 2902 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑))) | |
6 | an12 834 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑)) ↔ (𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
7 | 6 | exbii 1764 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑)) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
8 | 5, 7 | bitri 263 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
9 | 1, 4, 8 | 3bitr4i 291 | 1 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∃wex 1695 ∈ wcel 1977 {cab 2596 ∃wrex 2897 {crab 2900 ∪ cuni 4372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-uni 4373 |
This theorem is referenced by: neiptopuni 20744 cmpcov2 21003 tgcmp 21014 hauscmplem 21019 concompid 21044 alexsubALT 21665 cvmliftlem15 30534 fnessref 31522 cover2 32678 |
Copyright terms: Public domain | W3C validator |