Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetrecslem Structured version   Visualization version   GIF version

Theorem elsetrecslem 42243
Description: Lemma for elsetrecs 42244. Any element of setrecs(𝐹) is generated by some subset of setrecs(𝐹). This is much weaker than setrec2v 42242. To see why this lemma also requires setrec1 42237, consider what would happen if we replaced 𝐵 with {𝐴}. The antecedent would still hold, but the consequent would fail in general. Consider dispensing with the deduction form. (Contributed by Emmett Weisz, 11-Jul-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
elsetrecs.1 𝐵 = setrecs(𝐹)
Assertion
Ref Expression
elsetrecslem (𝐴𝐵 → ∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem elsetrecslem
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ssdifsn 42228 . . . . 5 (𝐵 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝐵𝐵 ∧ ¬ 𝐴𝐵))
21simprbi 479 . . . 4 (𝐵 ⊆ (𝐵 ∖ {𝐴}) → ¬ 𝐴𝐵)
32con2i 133 . . 3 (𝐴𝐵 → ¬ 𝐵 ⊆ (𝐵 ∖ {𝐴}))
4 elsetrecs.1 . . . 4 𝐵 = setrecs(𝐹)
5 sseq1 3589 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑥𝐵𝑎𝐵))
6 fveq2 6103 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
76eleq2d 2673 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐴 ∈ (𝐹𝑥) ↔ 𝐴 ∈ (𝐹𝑎)))
85, 7anbi12d 743 . . . . . . . 8 (𝑥 = 𝑎 → ((𝑥𝐵𝐴 ∈ (𝐹𝑥)) ↔ (𝑎𝐵𝐴 ∈ (𝐹𝑎))))
98notbid 307 . . . . . . 7 (𝑥 = 𝑎 → (¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) ↔ ¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎))))
109spv 2248 . . . . . 6 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → ¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)))
11 imnan 437 . . . . . . . . 9 ((𝑎𝐵 → ¬ 𝐴 ∈ (𝐹𝑎)) ↔ ¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)))
12 idd 24 . . . . . . . . . . 11 (𝑎𝐵 → (¬ 𝐴 ∈ (𝐹𝑎) → ¬ 𝐴 ∈ (𝐹𝑎)))
13 vex 3176 . . . . . . . . . . . . 13 𝑎 ∈ V
1413a1i 11 . . . . . . . . . . . 12 (𝑎𝐵𝑎 ∈ V)
15 id 22 . . . . . . . . . . . 12 (𝑎𝐵𝑎𝐵)
164, 14, 15setrec1 42237 . . . . . . . . . . 11 (𝑎𝐵 → (𝐹𝑎) ⊆ 𝐵)
1712, 16jctild 564 . . . . . . . . . 10 (𝑎𝐵 → (¬ 𝐴 ∈ (𝐹𝑎) → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
1817a2i 14 . . . . . . . . 9 ((𝑎𝐵 → ¬ 𝐴 ∈ (𝐹𝑎)) → (𝑎𝐵 → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
1911, 18sylbir 224 . . . . . . . 8 (¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)) → (𝑎𝐵 → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
2019adantrd 483 . . . . . . 7 (¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)) → ((𝑎𝐵 ∧ ¬ 𝐴𝑎) → ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎))))
21 ssdifsn 42228 . . . . . . 7 (𝑎 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝑎𝐵 ∧ ¬ 𝐴𝑎))
22 ssdifsn 42228 . . . . . . 7 ((𝐹𝑎) ⊆ (𝐵 ∖ {𝐴}) ↔ ((𝐹𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹𝑎)))
2320, 21, 223imtr4g 284 . . . . . 6 (¬ (𝑎𝐵𝐴 ∈ (𝐹𝑎)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹𝑎) ⊆ (𝐵 ∖ {𝐴})))
2410, 23syl 17 . . . . 5 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹𝑎) ⊆ (𝐵 ∖ {𝐴})))
2524alrimiv 1842 . . . 4 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → ∀𝑎(𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹𝑎) ⊆ (𝐵 ∖ {𝐴})))
264, 25setrec2v 42242 . . 3 (∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)) → 𝐵 ⊆ (𝐵 ∖ {𝐴}))
273, 26nsyl 134 . 2 (𝐴𝐵 → ¬ ∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)))
28 df-ex 1696 . 2 (∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)) ↔ ¬ ∀𝑥 ¬ (𝑥𝐵𝐴 ∈ (𝐹𝑥)))
2927, 28sylibr 223 1 (𝐴𝐵 → ∃𝑥(𝑥𝐵𝐴 ∈ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cdif 3537  wss 3540  {csn 4125  cfv 5804  setrecscsetrecs 42229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-r1 8510  df-rank 8511  df-setrecs 42230
This theorem is referenced by:  elsetrecs  42244
  Copyright terms: Public domain W3C validator