MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqaalem2 Structured version   Visualization version   GIF version

Theorem elqaalem2 23879
Description: Lemma for elqaa 23881. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
elqaa.1 (𝜑𝐴 ∈ ℂ)
elqaa.2 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
elqaa.3 (𝜑 → (𝐹𝐴) = 0)
elqaa.4 𝐵 = (coeff‘𝐹)
elqaa.5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
elqaa.6 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
elqaa.7 𝑃 = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁𝐾)))
Assertion
Ref Expression
elqaalem2 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑅 mod (𝑁𝐾)) = 0)
Distinct variable groups:   𝑘,𝑛,𝑥,𝑦,𝐴   𝐵,𝑘,𝑛   𝜑,𝑘   𝑘,𝐾,𝑛,𝑥,𝑦   𝑘,𝑁,𝑛,𝑥,𝑦   𝑅,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦,𝑘,𝑛)   𝑅(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑦,𝑘,𝑛)

Proof of Theorem elqaalem2
Dummy variables 𝑚 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn0 12302 . . 3 (𝐾 ∈ (0...(deg‘𝐹)) → 𝐾 ∈ ℕ0)
2 elqaa.6 . . . . 5 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
32fveq2i 6106 . . . 4 ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑅) = ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(seq0( · , 𝑁)‘(deg‘𝐹)))
4 nnmulcl 10920 . . . . . 6 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑖 · 𝑗) ∈ ℕ)
54adantl 481 . . . . 5 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 · 𝑗) ∈ ℕ)
6 elfznn0 12302 . . . . . 6 (𝑖 ∈ (0...(deg‘𝐹)) → 𝑖 ∈ ℕ0)
7 elqaa.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
8 elqaa.2 . . . . . . . . 9 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
9 elqaa.3 . . . . . . . . 9 (𝜑 → (𝐹𝐴) = 0)
10 elqaa.4 . . . . . . . . 9 𝐵 = (coeff‘𝐹)
11 elqaa.5 . . . . . . . . 9 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
127, 8, 9, 10, 11, 2elqaalem1 23878 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑁𝑖) ∈ ℕ ∧ ((𝐵𝑖) · (𝑁𝑖)) ∈ ℤ))
1312simpld 474 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝑁𝑖) ∈ ℕ)
1413adantlr 747 . . . . . 6 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝑁𝑖) ∈ ℕ)
156, 14sylan2 490 . . . . 5 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑖 ∈ (0...(deg‘𝐹))) → (𝑁𝑖) ∈ ℕ)
16 eldifi 3694 . . . . . . . 8 (𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}) → 𝐹 ∈ (Poly‘ℚ))
17 dgrcl 23793 . . . . . . . 8 (𝐹 ∈ (Poly‘ℚ) → (deg‘𝐹) ∈ ℕ0)
188, 16, 173syl 18 . . . . . . 7 (𝜑 → (deg‘𝐹) ∈ ℕ0)
19 nn0uz 11598 . . . . . . 7 0 = (ℤ‘0)
2018, 19syl6eleq 2698 . . . . . 6 (𝜑 → (deg‘𝐹) ∈ (ℤ‘0))
2120adantr 480 . . . . 5 ((𝜑𝐾 ∈ ℕ0) → (deg‘𝐹) ∈ (ℤ‘0))
22 nnz 11276 . . . . . . . . . 10 (𝑖 ∈ ℕ → 𝑖 ∈ ℤ)
2322ad2antrl 760 . . . . . . . . 9 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑖 ∈ ℤ)
247, 8, 9, 10, 11, 2elqaalem1 23878 . . . . . . . . . . 11 ((𝜑𝐾 ∈ ℕ0) → ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
2524simpld 474 . . . . . . . . . 10 ((𝜑𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℕ)
2625adantr 480 . . . . . . . . 9 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑁𝐾) ∈ ℕ)
2723, 26zmodcld 12553 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 mod (𝑁𝐾)) ∈ ℕ0)
2827nn0zd 11356 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 mod (𝑁𝐾)) ∈ ℤ)
29 nnz 11276 . . . . . . . . . 10 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
3029ad2antll 761 . . . . . . . . 9 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑗 ∈ ℤ)
3130, 26zmodcld 12553 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑗 mod (𝑁𝐾)) ∈ ℕ0)
3231nn0zd 11356 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑗 mod (𝑁𝐾)) ∈ ℤ)
3326nnrpd 11746 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑁𝐾) ∈ ℝ+)
34 nnre 10904 . . . . . . . . 9 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ)
3534ad2antrl 760 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑖 ∈ ℝ)
36 modabs2 12566 . . . . . . . 8 ((𝑖 ∈ ℝ ∧ (𝑁𝐾) ∈ ℝ+) → ((𝑖 mod (𝑁𝐾)) mod (𝑁𝐾)) = (𝑖 mod (𝑁𝐾)))
3735, 33, 36syl2anc 691 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑖 mod (𝑁𝐾)) mod (𝑁𝐾)) = (𝑖 mod (𝑁𝐾)))
38 nnre 10904 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
3938ad2antll 761 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → 𝑗 ∈ ℝ)
40 modabs2 12566 . . . . . . . 8 ((𝑗 ∈ ℝ ∧ (𝑁𝐾) ∈ ℝ+) → ((𝑗 mod (𝑁𝐾)) mod (𝑁𝐾)) = (𝑗 mod (𝑁𝐾)))
4139, 33, 40syl2anc 691 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑗 mod (𝑁𝐾)) mod (𝑁𝐾)) = (𝑗 mod (𝑁𝐾)))
4228, 23, 32, 30, 33, 37, 41modmul12d 12586 . . . . . 6 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (((𝑖 mod (𝑁𝐾)) · (𝑗 mod (𝑁𝐾))) mod (𝑁𝐾)) = ((𝑖 · 𝑗) mod (𝑁𝐾)))
43 oveq1 6556 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝑘 mod (𝑁𝐾)) = (𝑖 mod (𝑁𝐾)))
44 eqid 2610 . . . . . . . . . 10 (𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾))) = (𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))
45 ovex 6577 . . . . . . . . . 10 (𝑖 mod (𝑁𝐾)) ∈ V
4643, 44, 45fvmpt 6191 . . . . . . . . 9 (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑖) = (𝑖 mod (𝑁𝐾)))
4746ad2antrl 760 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑖) = (𝑖 mod (𝑁𝐾)))
48 oveq1 6556 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘 mod (𝑁𝐾)) = (𝑗 mod (𝑁𝐾)))
49 ovex 6577 . . . . . . . . . 10 (𝑗 mod (𝑁𝐾)) ∈ V
5048, 44, 49fvmpt 6191 . . . . . . . . 9 (𝑗 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑗) = (𝑗 mod (𝑁𝐾)))
5150ad2antll 761 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑗) = (𝑗 mod (𝑁𝐾)))
5247, 51oveq12d 6567 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑖)𝑃((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑗)) = ((𝑖 mod (𝑁𝐾))𝑃(𝑗 mod (𝑁𝐾))))
53 oveq12 6558 . . . . . . . . . 10 ((𝑥 = (𝑖 mod (𝑁𝐾)) ∧ 𝑦 = (𝑗 mod (𝑁𝐾))) → (𝑥 · 𝑦) = ((𝑖 mod (𝑁𝐾)) · (𝑗 mod (𝑁𝐾))))
5453oveq1d 6564 . . . . . . . . 9 ((𝑥 = (𝑖 mod (𝑁𝐾)) ∧ 𝑦 = (𝑗 mod (𝑁𝐾))) → ((𝑥 · 𝑦) mod (𝑁𝐾)) = (((𝑖 mod (𝑁𝐾)) · (𝑗 mod (𝑁𝐾))) mod (𝑁𝐾)))
55 elqaa.7 . . . . . . . . 9 𝑃 = (𝑥 ∈ V, 𝑦 ∈ V ↦ ((𝑥 · 𝑦) mod (𝑁𝐾)))
56 ovex 6577 . . . . . . . . 9 (((𝑖 mod (𝑁𝐾)) · (𝑗 mod (𝑁𝐾))) mod (𝑁𝐾)) ∈ V
5754, 55, 56ovmpt2a 6689 . . . . . . . 8 (((𝑖 mod (𝑁𝐾)) ∈ V ∧ (𝑗 mod (𝑁𝐾)) ∈ V) → ((𝑖 mod (𝑁𝐾))𝑃(𝑗 mod (𝑁𝐾))) = (((𝑖 mod (𝑁𝐾)) · (𝑗 mod (𝑁𝐾))) mod (𝑁𝐾)))
5845, 49, 57mp2an 704 . . . . . . 7 ((𝑖 mod (𝑁𝐾))𝑃(𝑗 mod (𝑁𝐾))) = (((𝑖 mod (𝑁𝐾)) · (𝑗 mod (𝑁𝐾))) mod (𝑁𝐾))
5952, 58syl6eq 2660 . . . . . 6 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑖)𝑃((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑗)) = (((𝑖 mod (𝑁𝐾)) · (𝑗 mod (𝑁𝐾))) mod (𝑁𝐾)))
60 oveq1 6556 . . . . . . . 8 (𝑘 = (𝑖 · 𝑗) → (𝑘 mod (𝑁𝐾)) = ((𝑖 · 𝑗) mod (𝑁𝐾)))
61 ovex 6577 . . . . . . . 8 ((𝑖 · 𝑗) mod (𝑁𝐾)) ∈ V
6260, 44, 61fvmpt 6191 . . . . . . 7 ((𝑖 · 𝑗) ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(𝑖 · 𝑗)) = ((𝑖 · 𝑗) mod (𝑁𝐾)))
635, 62syl 17 . . . . . 6 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(𝑖 · 𝑗)) = ((𝑖 · 𝑗) mod (𝑁𝐾)))
6442, 59, 633eqtr4rd 2655 . . . . 5 (((𝜑𝐾 ∈ ℕ0) ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(𝑖 · 𝑗)) = (((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑖)𝑃((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑗)))
65 oveq1 6556 . . . . . . . . 9 (𝑘 = (𝑁𝑖) → (𝑘 mod (𝑁𝐾)) = ((𝑁𝑖) mod (𝑁𝐾)))
66 ovex 6577 . . . . . . . . 9 ((𝑁𝑖) mod (𝑁𝐾)) ∈ V
6765, 44, 66fvmpt 6191 . . . . . . . 8 ((𝑁𝑖) ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(𝑁𝑖)) = ((𝑁𝑖) mod (𝑁𝐾)))
6814, 67syl 17 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(𝑁𝑖)) = ((𝑁𝑖) mod (𝑁𝐾)))
69 fveq2 6103 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝑁𝑘) = (𝑁𝑖))
7069oveq1d 6564 . . . . . . . . 9 (𝑘 = 𝑖 → ((𝑁𝑘) mod (𝑁𝐾)) = ((𝑁𝑖) mod (𝑁𝐾)))
71 eqid 2610 . . . . . . . . 9 (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))) = (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))
7270, 71, 66fvmpt 6191 . . . . . . . 8 (𝑖 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝑖) = ((𝑁𝑖) mod (𝑁𝐾)))
7372adantl 481 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝑖) = ((𝑁𝑖) mod (𝑁𝐾)))
7468, 73eqtr4d 2647 . . . . . 6 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(𝑁𝑖)) = ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝑖))
756, 74sylan2 490 . . . . 5 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑖 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(𝑁𝑖)) = ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝑖))
765, 15, 21, 64, 75seqhomo 12710 . . . 4 ((𝜑𝐾 ∈ ℕ0) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘(seq0( · , 𝑁)‘(deg‘𝐹))) = (seq0(𝑃, (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))))‘(deg‘𝐹)))
773, 76syl5eq 2656 . . 3 ((𝜑𝐾 ∈ ℕ0) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑅) = (seq0(𝑃, (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))))‘(deg‘𝐹)))
781, 77sylan2 490 . 2 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑅) = (seq0(𝑃, (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))))‘(deg‘𝐹)))
79 0zd 11266 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
804adantl 481 . . . . . . . 8 ((𝜑 ∧ (𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ)) → (𝑖 · 𝑗) ∈ ℕ)
8119, 79, 13, 80seqf 12684 . . . . . . 7 (𝜑 → seq0( · , 𝑁):ℕ0⟶ℕ)
8281, 18ffvelrnd 6268 . . . . . 6 (𝜑 → (seq0( · , 𝑁)‘(deg‘𝐹)) ∈ ℕ)
832, 82syl5eqel 2692 . . . . 5 (𝜑𝑅 ∈ ℕ)
8483adantr 480 . . . 4 ((𝜑𝐾 ∈ ℕ0) → 𝑅 ∈ ℕ)
85 oveq1 6556 . . . . 5 (𝑘 = 𝑅 → (𝑘 mod (𝑁𝐾)) = (𝑅 mod (𝑁𝐾)))
86 ovex 6577 . . . . 5 (𝑅 mod (𝑁𝐾)) ∈ V
8785, 44, 86fvmpt 6191 . . . 4 (𝑅 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑅) = (𝑅 mod (𝑁𝐾)))
8884, 87syl 17 . . 3 ((𝜑𝐾 ∈ ℕ0) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑅) = (𝑅 mod (𝑁𝐾)))
891, 88sylan2 490 . 2 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ ↦ (𝑘 mod (𝑁𝐾)))‘𝑅) = (𝑅 mod (𝑁𝐾)))
90 vex 3176 . . . . 5 𝑖 ∈ V
91 vex 3176 . . . . 5 𝑗 ∈ V
92 oveq12 6558 . . . . . . 7 ((𝑥 = 𝑖𝑦 = 𝑗) → (𝑥 · 𝑦) = (𝑖 · 𝑗))
9392oveq1d 6564 . . . . . 6 ((𝑥 = 𝑖𝑦 = 𝑗) → ((𝑥 · 𝑦) mod (𝑁𝐾)) = ((𝑖 · 𝑗) mod (𝑁𝐾)))
9493, 55, 61ovmpt2a 6689 . . . . 5 ((𝑖 ∈ V ∧ 𝑗 ∈ V) → (𝑖𝑃𝑗) = ((𝑖 · 𝑗) mod (𝑁𝐾)))
9590, 91, 94mp2an 704 . . . 4 (𝑖𝑃𝑗) = ((𝑖 · 𝑗) mod (𝑁𝐾))
96 nn0mulcl 11206 . . . . . 6 ((𝑖 ∈ ℕ0𝑗 ∈ ℕ0) → (𝑖 · 𝑗) ∈ ℕ0)
9796nn0zd 11356 . . . . 5 ((𝑖 ∈ ℕ0𝑗 ∈ ℕ0) → (𝑖 · 𝑗) ∈ ℤ)
981, 25sylan2 490 . . . . 5 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑁𝐾) ∈ ℕ)
99 zmodcl 12552 . . . . 5 (((𝑖 · 𝑗) ∈ ℤ ∧ (𝑁𝐾) ∈ ℕ) → ((𝑖 · 𝑗) mod (𝑁𝐾)) ∈ ℕ0)
10097, 98, 99syl2anr 494 . . . 4 (((𝜑𝐾 ∈ (0...(deg‘𝐹))) ∧ (𝑖 ∈ ℕ0𝑗 ∈ ℕ0)) → ((𝑖 · 𝑗) mod (𝑁𝐾)) ∈ ℕ0)
10195, 100syl5eqel 2692 . . 3 (((𝜑𝐾 ∈ (0...(deg‘𝐹))) ∧ (𝑖 ∈ ℕ0𝑗 ∈ ℕ0)) → (𝑖𝑃𝑗) ∈ ℕ0)
102 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑚 → (𝐵𝑘) = (𝐵𝑚))
103102oveq1d 6564 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑚 → ((𝐵𝑘) · 𝑛) = ((𝐵𝑚) · 𝑛))
104103eleq1d 2672 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (((𝐵𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵𝑚) · 𝑛) ∈ ℤ))
105104rabbidv 3164 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → {𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ})
106105infeq1d 8266 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
107106cbvmptv 4678 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) = (𝑚 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
10811, 107eqtri 2632 . . . . . . . . . . 11 𝑁 = (𝑚 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑚) · 𝑛) ∈ ℤ}, ℝ, < ))
1097, 8, 9, 10, 108, 2elqaalem1 23878 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((𝑁𝑘) ∈ ℕ ∧ ((𝐵𝑘) · (𝑁𝑘)) ∈ ℤ))
110109simpld 474 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℕ)
111110adantlr 747 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℕ)
112111nnzd 11357 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℤ)
11325adantr 480 . . . . . . 7 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑁𝐾) ∈ ℕ)
114112, 113zmodcld 12553 . . . . . 6 (((𝜑𝐾 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝑁𝑘) mod (𝑁𝐾)) ∈ ℕ0)
115114, 71fmptd 6292 . . . . 5 ((𝜑𝐾 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))):ℕ0⟶ℕ0)
1161, 115sylan2 490 . . . 4 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))):ℕ0⟶ℕ0)
117 ffvelrn 6265 . . . 4 (((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))):ℕ0⟶ℕ0𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝑖) ∈ ℕ0)
118116, 6, 117syl2an 493 . . 3 (((𝜑𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝑖) ∈ ℕ0)
119 c0ex 9913 . . . . 5 0 ∈ V
120 oveq12 6558 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑖) → (𝑥 · 𝑦) = (0 · 𝑖))
121120oveq1d 6564 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑖) → ((𝑥 · 𝑦) mod (𝑁𝐾)) = ((0 · 𝑖) mod (𝑁𝐾)))
122 ovex 6577 . . . . . 6 ((0 · 𝑖) mod (𝑁𝐾)) ∈ V
123121, 55, 122ovmpt2a 6689 . . . . 5 ((0 ∈ V ∧ 𝑖 ∈ V) → (0𝑃𝑖) = ((0 · 𝑖) mod (𝑁𝐾)))
124119, 90, 123mp2an 704 . . . 4 (0𝑃𝑖) = ((0 · 𝑖) mod (𝑁𝐾))
125 nn0cn 11179 . . . . . . 7 (𝑖 ∈ ℕ0𝑖 ∈ ℂ)
126125mul02d 10113 . . . . . 6 (𝑖 ∈ ℕ0 → (0 · 𝑖) = 0)
127126oveq1d 6564 . . . . 5 (𝑖 ∈ ℕ0 → ((0 · 𝑖) mod (𝑁𝐾)) = (0 mod (𝑁𝐾)))
12898nnrpd 11746 . . . . . 6 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑁𝐾) ∈ ℝ+)
129 0mod 12563 . . . . . 6 ((𝑁𝐾) ∈ ℝ+ → (0 mod (𝑁𝐾)) = 0)
130128, 129syl 17 . . . . 5 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (0 mod (𝑁𝐾)) = 0)
131127, 130sylan9eqr 2666 . . . 4 (((𝜑𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ ℕ0) → ((0 · 𝑖) mod (𝑁𝐾)) = 0)
132124, 131syl5eq 2656 . . 3 (((𝜑𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ ℕ0) → (0𝑃𝑖) = 0)
133 oveq12 6558 . . . . . . 7 ((𝑥 = 𝑖𝑦 = 0) → (𝑥 · 𝑦) = (𝑖 · 0))
134133oveq1d 6564 . . . . . 6 ((𝑥 = 𝑖𝑦 = 0) → ((𝑥 · 𝑦) mod (𝑁𝐾)) = ((𝑖 · 0) mod (𝑁𝐾)))
135 ovex 6577 . . . . . 6 ((𝑖 · 0) mod (𝑁𝐾)) ∈ V
136134, 55, 135ovmpt2a 6689 . . . . 5 ((𝑖 ∈ V ∧ 0 ∈ V) → (𝑖𝑃0) = ((𝑖 · 0) mod (𝑁𝐾)))
13790, 119, 136mp2an 704 . . . 4 (𝑖𝑃0) = ((𝑖 · 0) mod (𝑁𝐾))
138125mul01d 10114 . . . . . 6 (𝑖 ∈ ℕ0 → (𝑖 · 0) = 0)
139138oveq1d 6564 . . . . 5 (𝑖 ∈ ℕ0 → ((𝑖 · 0) mod (𝑁𝐾)) = (0 mod (𝑁𝐾)))
140139, 130sylan9eqr 2666 . . . 4 (((𝜑𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ ℕ0) → ((𝑖 · 0) mod (𝑁𝐾)) = 0)
141137, 140syl5eq 2656 . . 3 (((𝜑𝐾 ∈ (0...(deg‘𝐹))) ∧ 𝑖 ∈ ℕ0) → (𝑖𝑃0) = 0)
142 simpr 476 . . 3 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → 𝐾 ∈ (0...(deg‘𝐹)))
14318adantr 480 . . 3 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (deg‘𝐹) ∈ ℕ0)
1441adantl 481 . . . . 5 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → 𝐾 ∈ ℕ0)
145 fveq2 6103 . . . . . . 7 (𝑘 = 𝐾 → (𝑁𝑘) = (𝑁𝐾))
146145oveq1d 6564 . . . . . 6 (𝑘 = 𝐾 → ((𝑁𝑘) mod (𝑁𝐾)) = ((𝑁𝐾) mod (𝑁𝐾)))
147 ovex 6577 . . . . . 6 ((𝑁𝐾) mod (𝑁𝐾)) ∈ V
148146, 71, 147fvmpt 6191 . . . . 5 (𝐾 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝐾) = ((𝑁𝐾) mod (𝑁𝐾)))
149144, 148syl 17 . . . 4 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝐾) = ((𝑁𝐾) mod (𝑁𝐾)))
15098nncnd 10913 . . . . . . 7 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑁𝐾) ∈ ℂ)
15198nnne0d 10942 . . . . . . 7 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑁𝐾) ≠ 0)
152150, 151dividd 10678 . . . . . 6 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → ((𝑁𝐾) / (𝑁𝐾)) = 1)
153 1z 11284 . . . . . 6 1 ∈ ℤ
154152, 153syl6eqel 2696 . . . . 5 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → ((𝑁𝐾) / (𝑁𝐾)) ∈ ℤ)
15598nnred 10912 . . . . . 6 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑁𝐾) ∈ ℝ)
156 mod0 12537 . . . . . 6 (((𝑁𝐾) ∈ ℝ ∧ (𝑁𝐾) ∈ ℝ+) → (((𝑁𝐾) mod (𝑁𝐾)) = 0 ↔ ((𝑁𝐾) / (𝑁𝐾)) ∈ ℤ))
157155, 128, 156syl2anc 691 . . . . 5 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (((𝑁𝐾) mod (𝑁𝐾)) = 0 ↔ ((𝑁𝐾) / (𝑁𝐾)) ∈ ℤ))
158154, 157mpbird 246 . . . 4 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → ((𝑁𝐾) mod (𝑁𝐾)) = 0)
159149, 158eqtrd 2644 . . 3 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → ((𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾)))‘𝐾) = 0)
160101, 118, 132, 141, 142, 143, 159seqz 12711 . 2 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (seq0(𝑃, (𝑘 ∈ ℕ0 ↦ ((𝑁𝑘) mod (𝑁𝐾))))‘(deg‘𝐹)) = 0)
16178, 89, 1603eqtr3d 2652 1 ((𝜑𝐾 ∈ (0...(deg‘𝐹))) → (𝑅 mod (𝑁𝐾)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  cdif 3537  {csn 4125  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  infcinf 8230  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953   / cdiv 10563  cn 10897  0cn0 11169  cz 11254  cuz 11563  cq 11664  +crp 11708  ...cfz 12197   mod cmo 12530  seqcseq 12663  0𝑝c0p 23242  Polycply 23744  coeffccoe 23746  degcdgr 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-0p 23243  df-ply 23748  df-coe 23750  df-dgr 23751
This theorem is referenced by:  elqaalem3  23880
  Copyright terms: Public domain W3C validator