MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwun Structured version   Visualization version   GIF version

Theorem elpwun 6869
Description: Membership in the power class of a union. (Contributed by NM, 26-Mar-2007.)
Hypothesis
Ref Expression
eldifpw.1 𝐶 ∈ V
Assertion
Ref Expression
elpwun (𝐴 ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ∈ 𝒫 𝐵)

Proof of Theorem elpwun
StepHypRef Expression
1 elex 3185 . 2 (𝐴 ∈ 𝒫 (𝐵𝐶) → 𝐴 ∈ V)
2 elex 3185 . . 3 ((𝐴𝐶) ∈ 𝒫 𝐵 → (𝐴𝐶) ∈ V)
3 eldifpw.1 . . . 4 𝐶 ∈ V
4 difex2 6863 . . . 4 (𝐶 ∈ V → (𝐴 ∈ V ↔ (𝐴𝐶) ∈ V))
53, 4ax-mp 5 . . 3 (𝐴 ∈ V ↔ (𝐴𝐶) ∈ V)
62, 5sylibr 223 . 2 ((𝐴𝐶) ∈ 𝒫 𝐵𝐴 ∈ V)
7 elpwg 4116 . . 3 (𝐴 ∈ V → (𝐴 ∈ 𝒫 (𝐵𝐶) ↔ 𝐴 ⊆ (𝐵𝐶)))
8 difexg 4735 . . . . 5 (𝐴 ∈ V → (𝐴𝐶) ∈ V)
9 elpwg 4116 . . . . 5 ((𝐴𝐶) ∈ V → ((𝐴𝐶) ∈ 𝒫 𝐵 ↔ (𝐴𝐶) ⊆ 𝐵))
108, 9syl 17 . . . 4 (𝐴 ∈ V → ((𝐴𝐶) ∈ 𝒫 𝐵 ↔ (𝐴𝐶) ⊆ 𝐵))
11 uncom 3719 . . . . . 6 (𝐵𝐶) = (𝐶𝐵)
1211sseq2i 3593 . . . . 5 (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴 ⊆ (𝐶𝐵))
13 ssundif 4004 . . . . 5 (𝐴 ⊆ (𝐶𝐵) ↔ (𝐴𝐶) ⊆ 𝐵)
1412, 13bitri 263 . . . 4 (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐶) ⊆ 𝐵)
1510, 14syl6rbbr 278 . . 3 (𝐴 ∈ V → (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐶) ∈ 𝒫 𝐵))
167, 15bitrd 267 . 2 (𝐴 ∈ V → (𝐴 ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ∈ 𝒫 𝐵))
171, 6, 16pm5.21nii 367 1 (𝐴 ∈ 𝒫 (𝐵𝐶) ↔ (𝐴𝐶) ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wcel 1977  Vcvv 3173  cdif 3537  cun 3538  wss 3540  𝒫 cpw 4108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-sn 4126  df-pr 4128  df-uni 4373
This theorem is referenced by:  pwfilem  8143  elrfi  36275  dssmapnvod  37334
  Copyright terms: Public domain W3C validator