Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpr2OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of elpr2 4147 as of 23-Jul-2021. (Contributed by NM, 14-Oct-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
elpr2.1 | ⊢ 𝐵 ∈ V |
elpr2.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elpr2OLD | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4145 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
2 | elpr2.1 | . . . . . 6 ⊢ 𝐵 ∈ V | |
3 | eleq1 2676 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
4 | 2, 3 | mpbiri 247 | . . . . 5 ⊢ (𝐴 = 𝐵 → 𝐴 ∈ V) |
5 | elpr2.2 | . . . . . 6 ⊢ 𝐶 ∈ V | |
6 | eleq1 2676 | . . . . . 6 ⊢ (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V)) | |
7 | 5, 6 | mpbiri 247 | . . . . 5 ⊢ (𝐴 = 𝐶 → 𝐴 ∈ V) |
8 | 4, 7 | jaoi 393 | . . . 4 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → 𝐴 ∈ V) |
9 | elprg 4144 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
11 | 10 | ibir 256 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → 𝐴 ∈ {𝐵, 𝐶}) |
12 | 1, 11 | impbii 198 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∨ wo 382 = wceq 1475 ∈ wcel 1977 Vcvv 3173 {cpr 4127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-un 3545 df-sn 4126 df-pr 4128 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |