Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpadd0 Structured version   Visualization version   GIF version

 Description: Member of projective subspace sum with at least one empty set. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
Assertion
Ref Expression
elpadd0 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))

Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neanior 2874 . . . 4 ((𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ↔ ¬ (𝑋 = ∅ ∨ 𝑌 = ∅))
21bicomi 213 . . 3 (¬ (𝑋 = ∅ ∨ 𝑌 = ∅) ↔ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅))
32con1bii 345 . 2 (¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅) ↔ (𝑋 = ∅ ∨ 𝑌 = ∅))
4 eqid 2610 . . . 4 (le‘𝐾) = (le‘𝐾)
5 eqid 2610 . . . 4 (join‘𝐾) = (join‘𝐾)
6 padd0.a . . . 4 𝐴 = (Atoms‘𝐾)
7 padd0.p . . . 4 + = (+𝑃𝐾)
84, 5, 6, 7elpadd 34103 . . 3 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑆 ∈ (𝑋 + 𝑌) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
9 rex0 3894 . . . . . . . 8 ¬ ∃𝑞 ∈ ∅ ∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
10 rexeq 3116 . . . . . . . 8 (𝑋 = ∅ → (∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞 ∈ ∅ ∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
119, 10mtbiri 316 . . . . . . 7 (𝑋 = ∅ → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
12 rex0 3894 . . . . . . . . . 10 ¬ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
1312a1i 11 . . . . . . . . 9 (𝑞𝑋 → ¬ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1413nrex 2983 . . . . . . . 8 ¬ ∃𝑞𝑋𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)
15 rexeq 3116 . . . . . . . . 9 (𝑌 = ∅ → (∃𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
1615rexbidv 3034 . . . . . . . 8 (𝑌 = ∅ → (∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟) ↔ ∃𝑞𝑋𝑟 ∈ ∅ 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
1714, 16mtbiri 316 . . . . . . 7 (𝑌 = ∅ → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1811, 17jaoi 393 . . . . . 6 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ¬ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))
1918intnand 953 . . . . 5 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ¬ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
20 biorf 419 . . . . 5 (¬ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → ((𝑆𝑋𝑆𝑌) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌))))
2119, 20syl 17 . . . 4 ((𝑋 = ∅ ∨ 𝑌 = ∅) → ((𝑆𝑋𝑆𝑌) ↔ ((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌))))
22 orcom 401 . . . 4 (((𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟)) ∨ (𝑆𝑋𝑆𝑌)) ↔ ((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))))
2321, 22syl6rbb 276 . . 3 ((𝑋 = ∅ ∨ 𝑌 = ∅) → (((𝑆𝑋𝑆𝑌) ∨ (𝑆𝐴 ∧ ∃𝑞𝑋𝑟𝑌 𝑆(le‘𝐾)(𝑞(join‘𝐾)𝑟))) ↔ (𝑆𝑋𝑆𝑌)))
248, 23sylan9bb 732 . 2 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ (𝑋 = ∅ ∨ 𝑌 = ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))
253, 24sylan2b 491 1 (((𝐾𝐵𝑋𝐴𝑌𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑆 ∈ (𝑋 + 𝑌) ↔ (𝑆𝑋𝑆𝑌)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897   ⊆ wss 3540  ∅c0 3874   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  lecple 15775  joincjn 16767  Atomscatm 33568  +𝑃cpadd 34099 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-padd 34100 This theorem is referenced by:  paddval0  34114
 Copyright terms: Public domain W3C validator