Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopabi Structured version   Visualization version   GIF version

Theorem elopabi 7120
 Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006.)
Hypotheses
Ref Expression
elopabi.1 (𝑥 = (1st𝐴) → (𝜑𝜓))
elopabi.2 (𝑦 = (2nd𝐴) → (𝜓𝜒))
Assertion
Ref Expression
elopabi (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem elopabi
StepHypRef Expression
1 relopab 5169 . . . 4 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 1st2nd 7105 . . . 4 ((Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
31, 2mpan 702 . . 3 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
4 id 22 . . 3 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
53, 4eqeltrrd 2689 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
6 fvex 6113 . . 3 (1st𝐴) ∈ V
7 fvex 6113 . . 3 (2nd𝐴) ∈ V
8 elopabi.1 . . 3 (𝑥 = (1st𝐴) → (𝜑𝜓))
9 elopabi.2 . . 3 (𝑦 = (2nd𝐴) → (𝜓𝜒))
106, 7, 8, 9opelopab 4922 . 2 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
115, 10sylib 207 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝜒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475   ∈ wcel 1977  ⟨cop 4131  {copab 4642  Rel wrel 5043  ‘cfv 5804  1st c1st 7057  2nd c2nd 7058 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-1st 7059  df-2nd 7060 This theorem is referenced by:  uhgrac  25834  wlkelwrd  26058  vciOLD  26800  drngoi  32920  dicelval1sta  35494
 Copyright terms: Public domain W3C validator