MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elon2 Structured version   Visualization version   GIF version

Theorem elon2 5651
Description: An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.)
Assertion
Ref Expression
elon2 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))

Proof of Theorem elon2
StepHypRef Expression
1 elex 3185 . . 3 (𝐴 ∈ On → 𝐴 ∈ V)
2 elong 5648 . . 3 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
31, 2biadan2 672 . 2 (𝐴 ∈ On ↔ (𝐴 ∈ V ∧ Ord 𝐴))
4 ancom 465 . 2 ((𝐴 ∈ V ∧ Ord 𝐴) ↔ (Ord 𝐴𝐴 ∈ V))
53, 4bitri 263 1 (𝐴 ∈ On ↔ (Ord 𝐴𝐴 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  wcel 1977  Vcvv 3173  Ord word 5639  Oncon0 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-in 3547  df-ss 3554  df-uni 4373  df-tr 4681  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644
This theorem is referenced by:  sucelon  6909  tfrlem12  7372  tfrlem13  7373  gruina  9519  nobndlem1  31091
  Copyright terms: Public domain W3C validator