Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elon2 | Structured version Visualization version GIF version |
Description: An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004.) |
Ref | Expression |
---|---|
elon2 | ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3185 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ∈ V) | |
2 | elong 5648 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴)) | |
3 | 1, 2 | biadan2 672 | . 2 ⊢ (𝐴 ∈ On ↔ (𝐴 ∈ V ∧ Ord 𝐴)) |
4 | ancom 465 | . 2 ⊢ ((𝐴 ∈ V ∧ Ord 𝐴) ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) | |
5 | 3, 4 | bitri 263 | 1 ⊢ (𝐴 ∈ On ↔ (Ord 𝐴 ∧ 𝐴 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∈ wcel 1977 Vcvv 3173 Ord word 5639 Oncon0 5640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-v 3175 df-in 3547 df-ss 3554 df-uni 4373 df-tr 4681 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-ord 5643 df-on 5644 |
This theorem is referenced by: sucelon 6909 tfrlem12 7372 tfrlem13 7373 gruina 9519 nobndlem1 31091 |
Copyright terms: Public domain | W3C validator |