MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elom3 Structured version   Visualization version   GIF version

Theorem elom3 8428
Description: A simplification of elom 6960 assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003.)
Assertion
Ref Expression
elom3 (𝐴 ∈ ω ↔ ∀𝑥(Lim 𝑥𝐴𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elom3
StepHypRef Expression
1 elom 6960 . 2 (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥𝐴𝑥)))
2 limom 6972 . . . . 5 Lim ω
3 omex 8423 . . . . . 6 ω ∈ V
4 limeq 5652 . . . . . . 7 (𝑥 = ω → (Lim 𝑥 ↔ Lim ω))
5 eleq2 2677 . . . . . . 7 (𝑥 = ω → (𝐴𝑥𝐴 ∈ ω))
64, 5imbi12d 333 . . . . . 6 (𝑥 = ω → ((Lim 𝑥𝐴𝑥) ↔ (Lim ω → 𝐴 ∈ ω)))
73, 6spcv 3272 . . . . 5 (∀𝑥(Lim 𝑥𝐴𝑥) → (Lim ω → 𝐴 ∈ ω))
82, 7mpi 20 . . . 4 (∀𝑥(Lim 𝑥𝐴𝑥) → 𝐴 ∈ ω)
9 nnon 6963 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
108, 9syl 17 . . 3 (∀𝑥(Lim 𝑥𝐴𝑥) → 𝐴 ∈ On)
1110pm4.71ri 663 . 2 (∀𝑥(Lim 𝑥𝐴𝑥) ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥𝐴𝑥)))
121, 11bitr4i 266 1 (𝐴 ∈ ω ↔ ∀𝑥(Lim 𝑥𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wcel 1977  Oncon0 5640  Lim wlim 5641  ωcom 6957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-om 6958
This theorem is referenced by:  dfom4  8429  dfom5  8430
  Copyright terms: Public domain W3C validator