Step | Hyp | Ref
| Expression |
1 | | risset 3044 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0
↔ ∃𝑏 ∈
ℕ0 𝑏 =
𝐴) |
2 | 1 | a1i 11 |
. . . . 5
⊢ (𝑡 ∈ (ℕ0
↑𝑚 (1...𝑁)) → (𝐴 ∈ ℕ0 ↔
∃𝑏 ∈
ℕ0 𝑏 =
𝐴)) |
3 | 2 | rabbiia 3161 |
. . . 4
⊢ {𝑡 ∈ (ℕ0
↑𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} = {𝑡 ∈ (ℕ0
↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴} |
4 | 3 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0
↑𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} = {𝑡 ∈ (ℕ0
↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴}) |
5 | | nfcv 2751 |
. . . 4
⊢
Ⅎ𝑡(ℕ0
↑𝑚 (1...𝑁)) |
6 | | nfcv 2751 |
. . . 4
⊢
Ⅎ𝑎(ℕ0
↑𝑚 (1...𝑁)) |
7 | | nfv 1830 |
. . . 4
⊢
Ⅎ𝑎∃𝑏 ∈ ℕ0
𝑏 = 𝐴 |
8 | | nfcv 2751 |
. . . . 5
⊢
Ⅎ𝑡ℕ0 |
9 | | nfcsb1v 3515 |
. . . . . 6
⊢
Ⅎ𝑡⦋𝑎 / 𝑡⦌𝐴 |
10 | 9 | nfeq2 2766 |
. . . . 5
⊢
Ⅎ𝑡 𝑏 = ⦋𝑎 / 𝑡⦌𝐴 |
11 | 8, 10 | nfrex 2990 |
. . . 4
⊢
Ⅎ𝑡∃𝑏 ∈ ℕ0
𝑏 = ⦋𝑎 / 𝑡⦌𝐴 |
12 | | csbeq1a 3508 |
. . . . . 6
⊢ (𝑡 = 𝑎 → 𝐴 = ⦋𝑎 / 𝑡⦌𝐴) |
13 | 12 | eqeq2d 2620 |
. . . . 5
⊢ (𝑡 = 𝑎 → (𝑏 = 𝐴 ↔ 𝑏 = ⦋𝑎 / 𝑡⦌𝐴)) |
14 | 13 | rexbidv 3034 |
. . . 4
⊢ (𝑡 = 𝑎 → (∃𝑏 ∈ ℕ0 𝑏 = 𝐴 ↔ ∃𝑏 ∈ ℕ0 𝑏 = ⦋𝑎 / 𝑡⦌𝐴)) |
15 | 5, 6, 7, 11, 14 | cbvrab 3171 |
. . 3
⊢ {𝑡 ∈ (ℕ0
↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴} = {𝑎 ∈ (ℕ0
↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = ⦋𝑎 / 𝑡⦌𝐴} |
16 | 4, 15 | syl6eq 2660 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0
↑𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} = {𝑎 ∈ (ℕ0
↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = ⦋𝑎 / 𝑡⦌𝐴}) |
17 | | peano2nn0 11210 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
18 | 17 | adantr 480 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑁 + 1) ∈
ℕ0) |
19 | | ovex 6577 |
. . . . 5
⊢
(1...(𝑁 + 1)) ∈
V |
20 | | nn0p1nn 11209 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
21 | | elfz1end 12242 |
. . . . . . 7
⊢ ((𝑁 + 1) ∈ ℕ ↔
(𝑁 + 1) ∈ (1...(𝑁 + 1))) |
22 | 20, 21 | sylib 207 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
(1...(𝑁 +
1))) |
23 | 22 | adantr 480 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑁 + 1) ∈ (1...(𝑁 + 1))) |
24 | | mzpproj 36318 |
. . . . 5
⊢
(((1...(𝑁 + 1))
∈ V ∧ (𝑁 + 1)
∈ (1...(𝑁 + 1)))
→ (𝑐 ∈ (ℤ
↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1)))) |
25 | 19, 23, 24 | sylancr 694 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚
(1...(𝑁 + 1))) ↦
(𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1)))) |
26 | | eqid 2610 |
. . . . 5
⊢ (𝑁 + 1) = (𝑁 + 1) |
27 | 26 | rabdiophlem2 36384 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚
(1...(𝑁 + 1))) ↦
⦋(𝑐 ↾
(1...𝑁)) / 𝑡⦌𝐴) ∈ (mzPoly‘(1...(𝑁 + 1)))) |
28 | | eqrabdioph 36359 |
. . . 4
⊢ (((𝑁 + 1) ∈ ℕ0
∧ (𝑐 ∈ (ℤ
↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ
↑𝑚 (1...(𝑁 + 1))) ↦ ⦋(𝑐 ↾ (1...𝑁)) / 𝑡⦌𝐴) ∈ (mzPoly‘(1...(𝑁 + 1)))) → {𝑐 ∈ (ℕ0
↑𝑚 (1...(𝑁 + 1))) ∣ (𝑐‘(𝑁 + 1)) = ⦋(𝑐 ↾ (1...𝑁)) / 𝑡⦌𝐴} ∈ (Dioph‘(𝑁 + 1))) |
29 | 18, 25, 27, 28 | syl3anc 1318 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑐 ∈ (ℕ0
↑𝑚 (1...(𝑁 + 1))) ∣ (𝑐‘(𝑁 + 1)) = ⦋(𝑐 ↾ (1...𝑁)) / 𝑡⦌𝐴} ∈ (Dioph‘(𝑁 + 1))) |
30 | | eqeq1 2614 |
. . . 4
⊢ (𝑏 = (𝑐‘(𝑁 + 1)) → (𝑏 = ⦋𝑎 / 𝑡⦌𝐴 ↔ (𝑐‘(𝑁 + 1)) = ⦋𝑎 / 𝑡⦌𝐴)) |
31 | | csbeq1 3502 |
. . . . 5
⊢ (𝑎 = (𝑐 ↾ (1...𝑁)) → ⦋𝑎 / 𝑡⦌𝐴 = ⦋(𝑐 ↾ (1...𝑁)) / 𝑡⦌𝐴) |
32 | 31 | eqeq2d 2620 |
. . . 4
⊢ (𝑎 = (𝑐 ↾ (1...𝑁)) → ((𝑐‘(𝑁 + 1)) = ⦋𝑎 / 𝑡⦌𝐴 ↔ (𝑐‘(𝑁 + 1)) = ⦋(𝑐 ↾ (1...𝑁)) / 𝑡⦌𝐴)) |
33 | 26, 30, 32 | rexrabdioph 36376 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ {𝑐 ∈
(ℕ0 ↑𝑚 (1...(𝑁 + 1))) ∣ (𝑐‘(𝑁 + 1)) = ⦋(𝑐 ↾ (1...𝑁)) / 𝑡⦌𝐴} ∈ (Dioph‘(𝑁 + 1))) → {𝑎 ∈ (ℕ0
↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = ⦋𝑎 / 𝑡⦌𝐴} ∈ (Dioph‘𝑁)) |
34 | 29, 33 | syldan 486 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∈ (ℕ0
↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = ⦋𝑎 / 𝑡⦌𝐴} ∈ (Dioph‘𝑁)) |
35 | 16, 34 | eqeltrd 2688 |
1
⊢ ((𝑁 ∈ ℕ0
∧ (𝑡 ∈ (ℤ
↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0
↑𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} ∈
(Dioph‘𝑁)) |